Growth in the atmospheric aerosol concentration as a climate forcing agent

2012 ◽  
Vol 52 (8) ◽  
pp. 1107-1112 ◽  
Author(s):  
A. Kh. Aliev ◽  
A. G. Tlatov
2013 ◽  
Vol 9 (4) ◽  
pp. 1403-1416 ◽  
Author(s):  
S. Preunkert ◽  
M. Legrand

Abstract. Seasonally resolved chemical ice core records available from the Col du Dôme glacier (4250 m elevation, French Alps), are here used to reconstruct past aerosol load and composition of the free European troposphere from before World War II to present. Available ice core records include inorganic (Na+, Ca2+, NH4+, Cl−, NO3−, and SO42−) and organic (carboxylates, HCHO, humic-like substances, dissolved organic carbon, water-insoluble organic carbon, and black carbon) compounds and fractions that permit reconstructing the key aerosol components and their changes over the past. It is shown that the atmospheric load of submicron aerosol has been increased by a factor of 3 from the 1921–1951 to 1971–1988 years, mainly as a result of a large increase of sulfate (a factor of 5), ammonium and water-soluble organic aerosol (a factor of 3). Thus, not only growing anthropogenic emissions of sulfur dioxide and ammonia have caused the enhancement of the atmospheric aerosol load but also biogenic emissions producing water-soluble organic aerosol. This unexpected change of biospheric source of organic aerosol after 1950 needs to be considered and further investigated in scenarios dealing with climate forcing by atmospheric aerosol.


2004 ◽  
Vol 2 (6) ◽  
pp. 256-260
Author(s):  
Li Xu ◽  
Guangyu Shi ◽  
Jun Zhou ◽  
Yasunobu Iwasaka

2020 ◽  
Author(s):  
Franziska Bachmeier ◽  
Alexander L. Vogel ◽  
Anja Lauer ◽  
Ling Fang ◽  
Katarzyna Arturi ◽  
...  

<p>The effects of atmospheric aerosol particles on the Earth’s radiative balance are a major source of uncertainty in global climate models. A distinction and quantification between natural and anthropogenic atmospheric aerosol concentration and their sources has to be made to reduce this uncertainty. Therefore, the natural pre-industrial aerosol concentration of the atmosphere must be determined. Ice cores are climate archives that enable the reconstruction of past atmospheric composition changes.</p><p>For such a reconstruction, an ice core from the Swiss Alps, which covers the years from 1682-1985, was examined for secondary organic aerosol (SOA) compounds. A non-target analysis (NTA) was used to determine the chemical composition of small organic molecules in the ice. The analytical method of the melted ice samples is based on solid-phase extraction, liquid chromatography and high-resolution mass spectrometry. The result of the NTA showed more than 630 features statistically different from the blank. A hierarchical cluster analysis was performed, in which compounds with a similar trend over time were grouped (clustered) together. The cluster analysis separated the considered features into two main groups. The first cluster showed a good correlation with the dissolved organic carbon concentration (DOC) of non-fossil origin (R = 0.75) while the second main group correlated excellently with the fossil DOC (R = 0.95), attributed based on the radiocarbon content. This leads to the presumption that compounds represented in the first cluster originated from biogenic sources while compounds in the second cluster are anthropogenic emissions or SOA formed by anthropogenically emitted precursors. This hypothesis is supported by the temporal trend of the two groups. The potential biogenic compounds show a relative stable behavior throughout time.  At the beginning of the 20th century a decrease of biogenic SOA is recorded. No compounds from the anthropogenic cluster were detected in pre-industrial times, they increase slowly from 1800 and more and more from 1900. Based on the division into the two main clusters, a detailed graphical evaluation of their chemical composition was performed. We show that the suspected biogenic cluster consists mainly of oxidation products of volatile organic compounds (VOC). The presumed anthropogenic cluster consists mainly of organosulfates, nitrooxy-organosulfate, aromatic compounds and mono- and dinitroaromatics.</p>


2012 ◽  
Vol 37 (1) ◽  
pp. 21-27 ◽  
Author(s):  
N. O. Plaude ◽  
E. A. Stulov ◽  
I. P. Parshutkina ◽  
E. V. Sosnikova ◽  
N. A. Monakhova ◽  
...  

2013 ◽  
Vol 9 (1) ◽  
pp. 1099-1134 ◽  
Author(s):  
S. Preunkert ◽  
M. Legrand

Abstract. Seasonally resolved chemical ice core records available from the Col du Dôme glacier (4250 m elevation, French Alps) are here revisited in view to reconstruct past aerosol load of the free European troposphere from prior World War II to present. The extended array of inorganic (Na+, Ca2+, NH4+, Cl−, NO3−, and SO42−) and organic (carboxylates, HCHO, HUmic LIke Substances, dissolved organic carbon, water insoluble organic carbon, and black carbon) compounds and fractions already investigated permit to examine the overall aerosol composition and its change over the past. It is shown that the atmospheric load of submicron aerosol has been increased by a factor of 3 from the 1921–1951 to 1971–1988 years, mainly as a result of a large increase of sulfate (a factor of 5), ammonium and water-soluble organic aerosol (a factor of 3). It is shown that not only growing anthropogenic emissions of sulfur dioxide and ammonia have caused the enhancement of the atmospheric aerosol load but also biogenic emissions producing water soluble organic aerosol. This unexpected change of biospheric source of organic aerosol after 1950 needs to be considered and further investigated in scenarii dealing with climate forcing by atmospheric aerosol.


Sign in / Sign up

Export Citation Format

Share Document