Role of the large-scale solar magnetic field structure in the global organization of solar activity

2014 ◽  
Vol 54 (8) ◽  
pp. 996-999 ◽  
Author(s):  
E. V. Ivanov ◽  
V. N. Obridko
1998 ◽  
Vol 167 ◽  
pp. 493-496
Author(s):  
Dmitri I. Ponyavin

AbstractA technique is used to restore the magnetic field of the Sun viewed as star from the filament distribution seen on Hα photographs. For this purpose synoptic charts of the large-scale magnetic field reconstructed by the McIntosh method have been compared with the Sun-asstar solar magnetic field observed at Stanford. We have established a close association between the Sun-as-star magnetic field and the mean magnetic field inferred from synoptic magnetic field maps. A filtering technique was applied to find correlations between the Sun-as-star and large-scale magnetic field distributions during the course of a solar cycle. The correlations found were then used to restore the Sun-as-star magnetic field and its evolution in the late 1950s and 1960s, when such measurements of the field were not being made. A stackplot display of the inferred data reveals large-scale magnetic field organization and evolution. Patterns of the Sun-as-star magnetic field during solar cycle 19 were obtained. The proposed technique can be useful for studying the solar magnetic field structure and evolution during times with no direct observations.


2013 ◽  
Vol 8 (S300) ◽  
pp. 168-171
Author(s):  
Irina A. Bilenko

AbstractA comparison of changes in the structure of the global solar magnetic field and that in the prominence parameters, in solar cycles 21–23, are presented. It is proposed that the observed global magnetic field structure changes and periodicities in the mean solar magnetic field are the result of the excitation of large-scale Rossby waves. The changes in the prominence parameters are assumed to be the result of the global magnetic field structure changes, which may be triggered or modulated quasi-periodically by large-scale Rossby waves.


1980 ◽  
Vol 91 ◽  
pp. 323-326
Author(s):  
D. J. Mullan ◽  
R. S. Steinolfson

The acceleration of solar cosmic rays in association with certain solar flares is known to be highly correlated with the propagation of an MHD shock through the solar corona (Svestka, 1976). The spatial structure of the sources of solar cosmic rays will be determined by those regions of the corona which are accessible to the flare-induced shock. The regions to which the flare shock is permitted to propagate are determined by the large scale magnetic field structure in the corona. McIntosh (1972, 1979) has demonstrated that quiescent filaments form a single continuous feature (a “baseball stitch”) around the surface of the sun. It is known that helmet streamers overlie quiescent filaments (Pneuman, 1975), and these helmet streamers contain large magnetic neutral sheets which are oriented essentially radially. Hence the magnetic field structure in the low solar corona is characterized by a large-scale radial neutral sheet which weaves around the entire sun following the “baseball stitch”. There is therefore a high probability that as a shock propagates away from a flare, it will eventually encounter this large neutral sheet.


2010 ◽  
Vol 6 (S271) ◽  
pp. 407-408
Author(s):  
Jörn Warnecke ◽  
Axel Brandenburg

Abstractwe investigate the emergence of a large-scale magnetic field. This field is dynamo-generated by turbulence driven with a helical forcing function. Twisted arcade-like field structures are found to emerge in the exterior above the turbulence zone. Time series of the magnetic field structure show recurrent plasmoid ejections.


2008 ◽  
Vol 4 (S259) ◽  
pp. 509-514 ◽  
Author(s):  
Volker Heesen ◽  
M. Krause ◽  
R. Beck ◽  
R.-J. Dettmar

AbstractWe present radio continuum polarimetry observations of the nearby edge-on galaxy NGC 253 which possesses a very bright radio halo. Using the vertical synchrotron emission profiles and the lifetimes of cosmic-ray electrons, we determined the cosmic-ray bulk speed as 300±30 km s−1, indicating the presence of a galactic wind in this galaxy. The large-scale magnetic field was decomposed into a toroidal axisymmetric component in the disk and a poloidal component in the halo. The poloidal component shows a prominent X-shaped magnetic field structure centered on the nucleus, similar to the magnetic field observed in other edge-on galaxies. Faraday rotation measures indicate that the poloidal field has an odd parity (antisymmetric). NGC 253 offers the possibility to compare the magnetic field structure with models of galactic dynamos and/or galactic wind flows.


1998 ◽  
Vol 167 ◽  
pp. 393-396
Author(s):  
B.A. Ioshpa ◽  
E.I. Mogilevsky ◽  
V.N. Obridko

AbstractSOHO and YOHKOH images, as well as Hα filtergrams and magnetograms from IZMIRAN have been used to analyze the evolution of the related solar phenomena – filament, active region, and accompanying pair of coronal holes – during six solar rotations, with an emphasis on the events observed during August–September, 1996. The whole complex has been considered against the large–scale magnetic fields calculated under the potential approximation. A peculiar point has been found along the changing filament. It is shown that the phenomena under investigation (filament, active region, and coronal hole) form a single complex connected with the magnetic field structure.


Sign in / Sign up

Export Citation Format

Share Document