Three-Dimensional Numerical Simulation of the Development of Instability of a Contact Boundary of Colliding Metal Plates within the Gas-Dynamic Approximation

2019 ◽  
Vol 57 (2) ◽  
pp. 236-241
Author(s):  
S. V. Fortova ◽  
P. S. Utkin ◽  
T. S. Kazakova
Author(s):  
Raeder T. ◽  
◽  
Tenenev V.A. ◽  
Chernova A.A. ◽  
◽  
...  

When designing pressure regulators, one needs to have a complete understanding of gasdynamic processes. The numerical algorithm for three-dimensional gas-dynamic modeling of a full cycle of spring safety valve operation is proposed, which allows one to significantly reduce the computing time. Grid reconfiguration during CFD modeling is provided by interpolation procedure using previously calculated grids. Calculations show that gas-dynamic numerical simulation should account for a three-dimensional structure of the unsteady flow and the motion of the disc. These factors are taken into account when calculating full cycle of the valve on a coarse grid with the use of correction functions for the force and flow characteristics of the valve. The correction functions are calculated by the false transient method in the three-dimensional formulation. Cyclograms of the valve operation demonstrate satisfactory agreement of the experimental and numerical simulation results. The agreement in the variation of gas-dynamic forces with time is observed, except for the transitional regime before the valve starts to close. In the main work area, the calculated values of the reduced force belong to a confidence interval.


Author(s):  
R. A. Peshkov ◽  
D. R. Ismagilov

The paper introduces a mathematical model for calculating the gas-dynamic parameters in the launch container. The model takes into account chemical interactions between the main components of the combustion products, i.e. carbon monoxide and hydrogen, and oxygen. The resulting energy can be used to increase the initiating pulse of the rocket. Within the research, we described the basic requirements for the grid model, and analyzed the accuracy of the results obtained. Furthermore, we compared calculation data of pressure in the launch container with the results of the known method. Findings of research show that the use of two-dimensional and three-dimensional models makes it possible to obtain not only medium-volume gas-dynamic parameters, such as pressure, temperature, density, but also the distribution of these parameters over the computational domain. The developed method of numerical simulation will allow us to estimate the effect of changes in the configuration of the sub-rocket volume and other parameters on the dynamics of the rocket movement without conducting an expensive experiment


1998 ◽  
Vol 26 ◽  
pp. 174-178 ◽  
Author(s):  
Peter Gauer

A physically based numerical model of drifting and blowing snow in three-dimensional terrain is developed. The model includes snow transport by saltation and suspension. As an example, a numerical simulation for an Alpine ridge is presented and compared with field measurements.


Sign in / Sign up

Export Citation Format

Share Document