Anomalous Scaling of the Ion Beam Energy in the Current Sheet

JETP Letters ◽  
2020 ◽  
Vol 111 (4) ◽  
pp. 205-209
Author(s):  
R. A. Kovrazhkin ◽  
A. L. Glazunov ◽  
G. A. Vladimirova
1997 ◽  
Author(s):  
Christelle Philippe ◽  
Claude Laure ◽  
Andre Bouchoule ◽  
Christelle Philippe ◽  
Claude Laure ◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2306 ◽  
Author(s):  
Qianhuang Chen ◽  
Tianyang Shao ◽  
Yan Xing

The helium focused ion beam (He-FIB) is widely used in the field of nanostructure fabrication due to its high resolution. Complicated forms of processing damage induced by He-FIB can be observed in substrates, and these damages have a severe impact on nanostructure processing. This study experimentally investigated the influence of the beam energy and ion dose of He-FIB on processing damage. Based on the experimental results, a prediction function for the amorphous damage profile of the single-crystalline silicon substrate caused by incident He-FIB was proposed, and a method for calculating the amorphous damage profile by inputting ion dose and beam energy was established. Based on one set of the amorphous damage profiles, the function coefficients were determined using a genetic algorithm. Experiments on single-crystalline silicon scanned by He-FIB under different process parameters were carried out to validate the model. The proposed experiment-based model can accurately predict the amorphous damage profile induced by He-FIB under a wide range of different ion doses and beam energies.


2013 ◽  
Vol 46 (6) ◽  
pp. 1796-1804 ◽  
Author(s):  
Rossano Lang ◽  
Alan S. de Menezes ◽  
Adenilson O. dos Santos ◽  
Shay Reboh ◽  
Eliermes A. Meneses ◽  
...  

Out-of-plane and primarily in-plane lattice strain distributions, along the two perpendicular crystallographic directions on the subsurface of a silicon layer with embedded FeSi2nanoparticles, were analyzed and resolved as a function of the synchrotron X-ray beam energy by using ω:φ mappings of the ({\overline 1}11) and (111) Bragg-surface diffraction peaks. The nanoparticles, synthesized by ion-beam-induced epitaxial crystallization of Fe+-implanted Si(001), were observed to have different orientations and morphologies (sphere- and plate-like nanoparticles) within the implanted/recrystallized region. The results show that the shape of the synthesized material singularly affects the surrounding Si lattice. The lattice strain distribution elucidated by the nonconventional X-ray Bragg-surface diffraction technique clearly exhibits an anisotropic effect, predominantly caused by plate-shaped nanoparticles. This type of refined detection reflects a key application of the method, which could be used to allow discrimination of strains in distorted semiconductor substrate layers.


2014 ◽  
Vol 71 (5) ◽  
Author(s):  
Someraa Saleh Shakonah ◽  
Jalil Ali ◽  
Natashah Abd. Rashid ◽  
Kashif Chaudhary

Some of ion beam properties have been investigated by using Lee model code on plasma focus devices which is operated with nitrogen and helium gases. The operation of plasma focus in different pressure regime gives a consistent ion beam properties which can make the plasma focus a reliable ion beam source .These ion beam properties such as ion beam flux, ion beam fluence, ion beam energy, ion beam current, and beam ion number corresponding to gas pressure have been studied for Mather type plasma focus device. The result shows the differences between helium as lighter gas and nitrogen as heavier gas in term of ion beam properties. The fluence and flux are decrease for nitrogen while increase for helium. 


1988 ◽  
Vol 131 ◽  
Author(s):  
Kenji Gamo ◽  
Susumu Namba

ABSTRACTThe chtaracteristics of ion beam assisted deposition are discussed and compared with those of photon beam assisted deposition. Effects of various deposition parameters including ion species, beam energy and substrate temperature are discussed. Deposited films usually include impurities such as C and O. Inclusion of oxygen takes place by enhanced oxidation by background oxygen and may be reduced by depositing in a clean vacuum. Promising applications of maskless ion beam assisted deposition are also discussed.


Sign in / Sign up

Export Citation Format

Share Document