Ion Beam Assisted Deposition of Metal Films

1988 ◽  
Vol 131 ◽  
Author(s):  
Kenji Gamo ◽  
Susumu Namba

ABSTRACTThe chtaracteristics of ion beam assisted deposition are discussed and compared with those of photon beam assisted deposition. Effects of various deposition parameters including ion species, beam energy and substrate temperature are discussed. Deposited films usually include impurities such as C and O. Inclusion of oxygen takes place by enhanced oxidation by background oxygen and may be reduced by depositing in a clean vacuum. Promising applications of maskless ion beam assisted deposition are also discussed.

2008 ◽  
Vol 516 (7) ◽  
pp. 1365-1369 ◽  
Author(s):  
Li-Jian Meng ◽  
Jinsong Gao ◽  
M.P. dos Santos ◽  
Xiaoyi Wang ◽  
Tongtong Wang

2001 ◽  
Vol 695 ◽  
Author(s):  
Shuichi Miyabe ◽  
Masami Aono ◽  
Nobuaki Kitazawa ◽  
Yoshihisa Watanabe

ABSTRACTAluminum nitride (AlN) thin films with columnar and granular structures were prepared by ion-beam assisted deposition method by changing nitrogen ion beam energy, and the effects of the film microstructure and film thickness on their microhardness were studied by using a nano-indentation system with the maximum force of 3 mN. For the columnar structure film of 600 nm in thickness, the microhardness is found to be approximately 24 GPa when the normalized penetration depth to the film thickness is about 0.1. For the granular structure film of 700 nm in thickness, the microhardness is found to be approximately 14 GPa. These results reveal that the microhardness of the AlN films strongly depends on the film microstructure, which can be controlled by regulating the nitrogen ion beam energy.


1995 ◽  
Vol 396 ◽  
Author(s):  
Costas G. Fountzoulas

AbstractHard, low-friction silicon-containing diamond-like carbon coatings (Si-DLC), were formed by Ar+ ion beam assisted deposition (IBAD), on 5 in. diameter silicon wafers. The diffusion pump oil precursor (tetraphenyl-tetramethyl-trisiloxane: (C6H5)4(CH3)4Si3O2) was evaporated through seven, 3 mm diameter, closely packed apertures (multinozzle/multi-aperture container) arranged in a hexagonal pattern, approximately 5 mm apart according to mathematical model [1[ developed at ARL describing the spatial distribution of film deposition from nozzles and apertures onto inclined substrates.The ion energy was kept at 40 keV whereas the ion current density and the oil evaporation temperature were varied to produce hard, lubricious and adherent films. The multinozzle array allowed the relatively uniform (± 20%) coverage of the entire 5 in. substrate. The thickness and the microhardness of the films were measured along the rectilinear surface coordinates of the substrate area. Depending on the deposition parameters the standard deviation of the coating thicknesses and Knoop micro-hardness varied from 14 to 30 percent respectively over the substrate. This is a significant improvement from the previously used single nozzle set up where the standard deviation of the coating thickness was 50 to 100 percent for 2 in. diameter substrates. The Knoop microhardness and the sliding friction coefficient of these coatings ranged from 10,000 to 20,000 MPa and 0.04 to 0.2 respectively. These values are in agreement with our previously reported single nozzle results [2].


1994 ◽  
Vol 9 (9) ◽  
pp. 2440-2449 ◽  
Author(s):  
François Rossi ◽  
Bernard André ◽  
A. van Veen ◽  
P.E. Mijnarends ◽  
H. Schut ◽  
...  

Carbon films with up to 32 at. % of nitrogen have been prepared with ion beam assisted magnetron, using a N2+/N+ beam at energies between 50 and 300 eV. The composition and density of the films vary strongly with the deposition parameters. EELS, SXS, XPS, and IR studies show that these a-C: N films are mostly graphitic and have up to 20% sp3 bonding. Nitrogen is mostly combined with carbon in nitrile (C ≡ N) and imine (C=N) groups. It is shown by RBS and NDP that density goes through a maximum as the average damage energy per incoming ion increases. Positron annihilation spectroscopy shows that the void concentration in the films goes through a minimum with average damage energy. These results are consistent with a densification induced by the collisions at low average damage energy values and induced graphitization at higher damage energy values. These results are similar to what is observed for Ar ion assisted deposition of a-C films. The mechanical properties of these films have been studied with a nanoindenter, and it was found that the hardness and Young's modulus go through a maximum as the average damage energy is increased. The maximum of mechanical properties corresponds to the minimum in the void concentration in the film. Tribological studies of the a-C: N show that the friction coefficient obtained against diamond under dynamic loading decreases strongly as the nitrogen composition increases, this effect being more pronounced at low loads.


1988 ◽  
Vol 128 ◽  
Author(s):  
E. P. Donovan ◽  
C. A. Carosella ◽  
D. Van Vechten

ABSTRACTThe annealing behavior of the optical properties of silicon nitride films (Si1-xNx) is described for films fabricated by ion beam assisted deposition. The data are needed for the precise manufacture of optical filters, where the index of refraction must be predicted from deposition parameters and film annealing history.The reflection of homogeneous, amorphous samples deposited on (100) silicon substrates was measured from 500 to 3120 nm. Fits to the interference spectra were obtained over the range 1000 to 3120 nm to obtain the index of refraction vs wavelength as a function of film nitrogen content. Nitrogen atom fraction was varied from.2 to.58 by variation of the incident relative fluxes of nitrogen ion beam current to evaporant silicon flux. The films were annealed in argon at 450 C, 600 C, 750 C, and 1100 C and the measurements repeated. The systematic shifts in index of refraction with annealing temperature are described.


1996 ◽  
Vol 441 ◽  
Author(s):  
G. S. Was ◽  
D. J. Srolovitz ◽  
Z. Ma ◽  
D. Liang

AbstractA strategy was developed for controlling hillock formation in thin metal films by controlling the fiber texture to be of a relatively “weak” orientation. Two-dimensional molecular dynamics (MD) simulations were performed to determine the parameter dependencies of texturing under ion beam assisted deposition. Simulations showed that even for film orientations that have a lower number of nearest neighbor surface bonds, the reduction in sputtering rate by ion channeling will favor the growth of the grains aligned with their channeling direction in the direction of the ion beam. Higher energies should result in greater sputtering and a higher surface roughness. Confirmatory experiments were performed by growing Al films using ion beam assisted deposition in which the Ne ion beam was normal to the substrate surface. For all energies above 0 eV/atom, the fiber texture contained a (220) component and, at high normalized energies, the fiber texture was heavily (220) dominated. Subsequent annealing at 450°C for 30 min. resulted in hillock formation in the PVD (physical vapor deposition) condition, a reduction in the hillock density by two orders of magnitude in the 120 eV/atom condition and complete elimination of hillocking above 800 eV/atom. Although the surface roughness increased with ion beam energy as modeled by MD, the surface became smoother during annealing. These results show that the fiber texture can be controlled in a thin metal film in such a way as to eliminate hillock formation, that molecular dynamics simulation is a valuable predictive tool for guiding experiments in the development of thin film microstructures and that ion beam assisted deposition is an effective, practical tool for controlling microstructures of thin metal films.


Sign in / Sign up

Export Citation Format

Share Document