scholarly journals Magnetic-field-induced enhancement of ion beam energy in a magnetically expanding plasma using permanent magnets

2010 ◽  
Vol 19 (2) ◽  
pp. 025004 ◽  
Author(s):  
Kazunori Takahashi ◽  
Yutaka Shida ◽  
Tamiya Fujiwara
2019 ◽  
Vol 85 (3) ◽  
Author(s):  
Erik Varberg ◽  
Åshild Fredriksen

The work described in this article was carried out to investigate how permanent magnets (PM) affect the plasma confinement and ion beam properties in an inductively coupled plasma which expands from a helicon source. The cylindrical plasma device Njord has a 13 cm long and 20 cm wide stainless steel port connecting the source chamber and the diffusion chamber. The source chamber has an axial magnetic field produced by two coils, with magnetic field lines expanding into the diffusion chamber. Simulations have shown that the field lines leaving the edge of the source hit the port wall, causing a loss of electrons in this section. In the experiments performed in this work, PMs were added around the port walls near the exit of a plasma source and the effect was investigated experimentally by means of a retarding field energy analyser probe. The plasma potential, ion density and ion beam parameters were estimated, and the results with and without the PMs were compared. The results showed that the plasma density in the centre can in some cases be doubled, and the density at the edges of the plasma increased significantly with PMs in place. Although the plasma potential was slightly affected, and the beam velocity dropped by ${\sim}$ 10 %, the ion beam flux increased by a factor of 1.5.


1978 ◽  
Vol 20 (3) ◽  
pp. 351-364 ◽  
Author(s):  
J. P. Hauck ◽  
Gregory Benford

We inject a fast ion beam across a magnetic field, through a cylindrical 5 cm diameter plasma. Shear Kelvin–Helmholtz waves, already present in the plasma, are considerably amplified. The ion beam is rapidly slowed and scattered. The observed stopping power exceeds the classical power by over two orders of magnitude. A simple theoretical estimate, ascribing beam energy loss to driving of the waves, agrees qualitatively with observations.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2522
Author(s):  
Guangdou Liu ◽  
Shiqin Hou ◽  
Xingping Xu ◽  
Wensheng Xiao

In the linear and planar motors, the 1D Halbach magnet array is extensively used. The sinusoidal property of the magnetic field deteriorates by analyzing the magnetic field at a small air gap. Therefore, a new 1D Halbach magnet array is proposed, in which the permanent magnet with a curved surface is applied. Based on the superposition of principle and Fourier series, the magnetic flux density distribution is derived. The optimized curved surface is obtained and fitted by a polynomial. The sinusoidal magnetic field is verified by comparing it with the magnetic flux density of the finite element model. Through the analysis of different dimensions of the permanent magnet array, the optimization result has good applicability. The force ripple can be significantly reduced by the new magnet array. The effect on the mass and air gap is investigated compared with a conventional magnet array with rectangular permanent magnets. In conclusion, the new magnet array design has the scalability to be extended to various sizes of motor and is especially suitable for small air gap applications.


1981 ◽  
Vol 47 (7) ◽  
pp. 508-511 ◽  
Author(s):  
S. Robertson ◽  
H. Ishizuka ◽  
W. Peter ◽  
N. Rostoker
Keyword(s):  

2013 ◽  
Vol 136 (1) ◽  
Author(s):  
Longhan Xie ◽  
Ruxu Du

This paper investigates a frequency-tunable nonlinear electromagnetic energy harvester. The electromagnetic harvester mainly consists of permanent magnets supported on the base to provide a magnetic field, and electrical coils suspended by four even-distributed elastic strings to be an oscillating object. When the base provides external excitation, the electrical coils oscillate in the magnetic field to produce electricity. The stretch length of the elastic strings can be tuned to change their stretch ratio by tuning adjustable screws, which can result in a shift of natural frequency of the harvester system. The transverse force of the elastic strings has nonlinear behavior, which broadens the system's frequency response to improve the performance of the energy harvester. Both simulation and experiment show that the above-discussed electromagnetic energy harvester has nonlinear behavior and frequency-tunable ability, which can be used to improve the effectiveness of energy harvesting.


Sign in / Sign up

Export Citation Format

Share Document