Combination-sensitive neurons in the central nucleus of inferior colliculus of the house mouse Mus musculus

2011 ◽  
Vol 47 (3) ◽  
pp. 302-307
Author(s):  
A. G. Akimov ◽  
M. A. Egorova
1999 ◽  
Vol 82 (1) ◽  
pp. 164-175 ◽  
Author(s):  
Kevin A. Davis ◽  
Ramnarayan Ramachandran ◽  
Bradford J. May

Single units in the central nucleus of the inferior colliculus (ICC) of unanesthetized decerebrate cats can be grouped into three distinct types (V, I, and O) according to the patterns of excitation and inhibition revealed in contralateral frequency response maps. This study extends the description of these response types by assessing their ipsilateral and binaural response map properties. Here the nature of ipsilateral inputs is evaluated directly using frequency response maps and compared with results obtained from methods that rely on sensitivity to interaural level differences (ILDs). In general, there is a one-to-one correspondence between observed ipsilateral input characteristics and those inferred from ILD manipulations. Type V units receive ipsilateral excitation and show binaural facilitation (EE properties); type I and type O units receive ipsilateral inhibition and show binaural excitatory/inhibitory (EI) interactions. Analyses of binaural frequency response maps show that these ILD effects extend over the entire receptive field of ICC units. Thus the range of frequencies that elicits excitation from type V units is expanded with increasing levels of ipsilateral stimulation, whereas the excitatory bandwidth of type I and O units decreases under the same binaural conditions. For the majority of ICC units, application of bicuculline, an antagonist for GABAA-mediated inhibition, does not alter the basic effects of binaural stimulation; rather, it primarily increases spontaneous and maximum discharge rates. These results support our previous interpretations of the putative dominant inputs to ICC response types and have important implications for midbrain processing of competing free-field sounds that reach the listener with different directional signatures.


1976 ◽  
Vol 49 (2) ◽  
pp. 191-199 ◽  
Author(s):  
G. Robert Lynch ◽  
Carol Becker Lynch ◽  
Marjory Dube ◽  
Cynthia Allen

eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Megan Phifer-Rixey ◽  
Michael W Nachman

The house mouse, Mus musculus, was established in the early 1900s as one of the first genetic model organisms owing to its short generation time, comparatively large litters, ease of husbandry, and visible phenotypic variants. For these reasons and because they are mammals, house mice are well suited to serve as models for human phenotypes and disease. House mice in the wild consist of at least three distinct subspecies and harbor extensive genetic and phenotypic variation both within and between these subspecies. Wild mice have been used to study a wide range of biological processes, including immunity, cancer, male sterility, adaptive evolution, and non-Mendelian inheritance. Despite the extensive variation that exists among wild mice, classical laboratory strains are derived from a limited set of founders and thus contain only a small subset of this variation. Continued efforts to study wild house mice and to create new inbred strains from wild populations have the potential to strengthen house mice as a model system.


2011 ◽  
Vol 65 (12) ◽  
pp. 2209-2217 ◽  
Author(s):  
Adam Dušek ◽  
Luděk Bartoš ◽  
František Sedláček

Sign in / Sign up

Export Citation Format

Share Document