Kinetic, Isotherm and Thermodynamic Study of Acid Blue 29 Textile Dye Removal from Aqueous Solution by Using Hydroxyapatite and Partially Hydrolyzed Polyacrylamide Modified Hydroxyapatite

2021 ◽  
Vol 95 (13) ◽  
pp. 2558-2566
Author(s):  
Hanane Mahroug
2020 ◽  
Author(s):  
Zeinab Ghorbani

This study aimed to investigate the efficiency of the electro-persulfate process in removing acid blue 25 from aqueous solution. In order to optimize the parameters, the OFAT method was used, and the effect of three main parameters, including pH, sodium persulfate salt concentration, and current intensity was investigated. According to the results, the optimal removal efficiency of 94% in 60 minutes was obtained under conditions of pH=5, the initial concentration of sodium persulfate=250 mg / L, and the current=500 mA. According to the results of this study, the electro-persulfate process sulfate process can be an efficient process for dye removal from industrial effluents.


2016 ◽  
Vol 73 (9) ◽  
pp. 2211-2221 ◽  
Author(s):  
Najoua Ben Douissa ◽  
Sonia Dridi-Dhaouadi ◽  
Mohamed Farouk Mhenni

Extracted cellulose from Posidonia oceanica was used as an adsorbent for removal of a cationic (Basic blue 9, BB) and anionic textile dye (Acid blue 25, AB) from aqueous solution in single dye system. Characterization of the extracted cellulose and extracted cellulose-dye systems were performed using several techniques such as Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, zeta potential and Boehm acid–base titration method. Adsorption tests showed that the extracted cellulose presented higher adsorption of BB than AB in single dye system, revealing that electrostatic interactions are responsible, in the first instance, for the dye–adsorbent interaction. In single dye systems, the extracted cellulose presented the maximum adsorption capacities of BB and AB at 0.955 mmol.g−1 and 0.370 mmol.g−1, respectively. Adsorption experiments of AB dye on extracted cellulose saturated by BB dye exhibited the release of the latter dye from the sorbent which lead to dye–dye interaction in aqueous solution due to electrostatic attraction between both species. Interaction of BB and AB dyes were investigated using spectrophotometric analysis and results demonstrated the formation of a molecular complex detected at wavelengths 510 and 705 nm when anionic (AB) and cationic (BB) dye were taken in equimolar proportions. The adsorption isotherm of AB, taking into account the dye–dye interaction was investigated and showed that BB dye was released proportionately by AB equilibrium concentration. It was also observed that AB adsorption is widely enhanced when the formation of the molecular complex is disadvantaged.


2021 ◽  
Vol 8 ◽  
Author(s):  
Gang Lu ◽  
Jikuan Zhao ◽  
Shaoqi Li ◽  
Yuquan Chen ◽  
Chunfang Li ◽  
...  

Partially hydrolyzed polyacrylamide (HPAM) was widely implemented to improve the rheological properties of displacing fluids, but the high temperature and salinity of the reservoir brine limited their applications. Herein, copolymers including HPAM, zwitterion-modified HPAM (z-HPAM), PEG-modified HPAM (p-HPAM), and zwitterion/PEG-modified HPAM (zp-HPAM) were prepared by free radical polymerization in an aqueous solution. The viscosity of these copolymers under different temperature and salinity was measured in aqueous solution. It is found that the viscosity of the HPAM under the harsh condition (90oC, 20 × 104 mg/L salinity) is only 9.6% of that value under the normal condition (25oC, pure water), while the z-HPAM can significantly improve salt resistance by the effects of salting-in effect and intermolecular electrostatic crosslinking, showing a viscosity retention of 22.9% under the harsh condition. The addition of PEG-containing monomer can strengthen hydrogen bonding between the polymer chains and form a sterically ordered structure with improved salinity and temperature resistance. The synergistic effect of zwitterion units and PEG units endows the zp-HPAM with good salinity and temperature resistance; thus, the sample viscosity under the harsh condition remains 170 mPa s, which retains 29% of the value under the normal condition. The enhanced rheology properties of the zp-HPAM under the harsh condition are significant for the enhanced oil recovery of water-soluble polymer flooding.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Gamal Owes El-Sayed ◽  
Talaat Younis Mohammed ◽  
Ashraf Abd-Allah Salama

Sugarcane stalks powder was tested for its efficiency of removing a textile dye Maxilon Red GRL from aqueous solution. Different parameters affecting dye removal efficiency were studied. These parameters include contact time, initial dye concentration, adsorbent dose, ionic strength, pH, and temperature. Langmuir and Freundlich isotherm models were applied to the equilibrium data. The data fitted well with the Langmuir isotherm (). The maximum monolayer adsorption capacity () was found to be 20.96 mg/g at an initial pH of 7.2. The temperature variation study showed that dye adsorption is exothermic and spontaneous with increased randomness at the solid solution interface. The results indicated that sugarcane stalks could be an alternative for more costly adsorbents used for dye removal. The kinetic of the adsorption process followed the pseudo second-order kinetics model.


Author(s):  
E Kusrini ◽  
B Wicaksono ◽  
Y Yulizar ◽  
EA Prasetyanto ◽  
C Gunawan

Sign in / Sign up

Export Citation Format

Share Document