harsh condition
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 15)

H-INDEX

3
(FIVE YEARS 1)

Author(s):  
M. I. Mohd Dzukhi ◽  
T. A. Musa ◽  
W. A. Wan Aris ◽  
A. H. Omar ◽  
I. A. Musliman

Abstract. Once the unknown integer ambiguity values are resolved, the GPS carrier phase observation will be transformed into a millimeter-level precision measurement. However, GPS observation are prone to a variety of errors, making it a biased measurement. There are two components in identifying integer ambiguities: estimation and validation. The estimation procedure aims to determine the ambiguity's integer values, and the validation step checks whether the estimated integer value is acceptable. Even though the theory and procedures for ambiguity estimates are well known, the topic of ambiguity validation is still being researched. The dependability of computed coordinates will be reduced if a false fixed solution emerges from an incorrectly estimated ambiguity integer value. In this study, the reliability of the fixed solution obtained by using several base stations in GPS positioning was investigated, and the coordinates received from these bases were compared. In a conclusion, quality control measures such as employing several base stations will improve the carrier phase measurement's accuracy.


2021 ◽  
Vol 8 ◽  
Author(s):  
Gang Lu ◽  
Jikuan Zhao ◽  
Shaoqi Li ◽  
Yuquan Chen ◽  
Chunfang Li ◽  
...  

Partially hydrolyzed polyacrylamide (HPAM) was widely implemented to improve the rheological properties of displacing fluids, but the high temperature and salinity of the reservoir brine limited their applications. Herein, copolymers including HPAM, zwitterion-modified HPAM (z-HPAM), PEG-modified HPAM (p-HPAM), and zwitterion/PEG-modified HPAM (zp-HPAM) were prepared by free radical polymerization in an aqueous solution. The viscosity of these copolymers under different temperature and salinity was measured in aqueous solution. It is found that the viscosity of the HPAM under the harsh condition (90oC, 20 × 104 mg/L salinity) is only 9.6% of that value under the normal condition (25oC, pure water), while the z-HPAM can significantly improve salt resistance by the effects of salting-in effect and intermolecular electrostatic crosslinking, showing a viscosity retention of 22.9% under the harsh condition. The addition of PEG-containing monomer can strengthen hydrogen bonding between the polymer chains and form a sterically ordered structure with improved salinity and temperature resistance. The synergistic effect of zwitterion units and PEG units endows the zp-HPAM with good salinity and temperature resistance; thus, the sample viscosity under the harsh condition remains 170 mPa s, which retains 29% of the value under the normal condition. The enhanced rheology properties of the zp-HPAM under the harsh condition are significant for the enhanced oil recovery of water-soluble polymer flooding.


2021 ◽  
Vol 22 (23) ◽  
pp. 13043
Author(s):  
Qiuli Hou ◽  
Hanqiao Zhang ◽  
Lixia Bao ◽  
Zeyu Song ◽  
Changpeng Liu ◽  
...  

Pesticides have been used extensively in the field of plant protection to maximize crop yields. However, the long-term, unmanaged application of pesticides has posed severe challenges such as pesticide resistance, environmental contamination, risk in human health, soil degradation, and other important global issues. Recently, the combination of nanotechnology with plant protection strategies has offered new perspectives to mitigate these global issues, which has promoted a rapid development of NCs-based pesticides. Unlike certain conventional pesticides that have been applied inefficiently and lacked targeted control, pesticides delivered by nanocarriers (NCs) have optimized formulations, controlled release rate, and minimized or site-specific application. They are receiving increasing attention and are considered as an important part in sustainable and smart agriculture. This review discussed the limitation of traditional pesticides or conventional application mode, focused on the sustainable features of NCs-based pesticides such as improved formulation, enhanced stability under harsh condition, and controlled release/degradation. The perspectives of NCs-based pesticides and their risk assessment were also suggested in this view for a better use of NCs-based pesticides to facilitate sustainable, smart agriculture in the future.


2021 ◽  
Vol 118 (45) ◽  
pp. e2115367118
Author(s):  
Chao Wu ◽  
Ajinkya A. Deshmukh ◽  
Omer Yassin ◽  
Jierui Zhou ◽  
Abdullah Alamri ◽  
...  

Flexible large bandgap dielectric materials exhibiting ultra-fast charging-discharging rates are key components for electrification under extremely high electric fields. A polyoxafluoronorbornene (m-POFNB) with fused five-membered rings separated by alkenes and flexible single bonds as the backbone, rather than conjugated aromatic structure typically for conventional high-temperature polymers, is designed to achieve simultaneously high thermal stability and large bandgap. In addition, an asymmetrically fluorinated aromatic pendant group extended from the fused bicyclic structure of the backbone imparts m-POFNB with enhanced dipolar relaxation and thus high dielectric constant without sacrificing the bandgap. m-POFNB thereby exhibits an unprecedentedly high discharged energy density of 7.44 J/cm3 and high efficiency at 150 °C. This work points to a strategy to break the paradox of mutually exclusive constraints between bandgap, dielectric constant, and thermal stability in the design of all-organic polymer dielectrics for harsh condition electrifications.


Nano Energy ◽  
2021 ◽  
Vol 86 ◽  
pp. 106086
Author(s):  
Bing Jiang ◽  
Yong Long ◽  
Xiong Pu ◽  
Weiguo Hu ◽  
Zhong Lin Wang

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Shohreh Ariaeenejad ◽  
Atefeh Sheykh Abdollahzadeh Mamaghani ◽  
Morteza Maleki ◽  
Kaveh Kavousi ◽  
Mehdi Foroozandeh Shahraki ◽  
...  

Abstract Background Lignocellulosic biomass, is a great resource for the production of bio-energy and bio-based material since it is largely abundant, inexpensive and renewable. The requirement of new energy sources has led to a wide search for novel effective enzymes to improve the exploitation of lignocellulose, among which the importance of thermostable and halotolerant cellulase enzymes with high pH performance is significant. Results The primary aim of this study was to discover a novel alkali-thermostable endo-β-1,4-glucanase from the sheep rumen metagenome. At first, the multi-step in-silico screening approach was utilized to find primary candidate enzymes with superior properties. Among the computationally selected candidates, PersiCel4 was found and subjected to cloning, expression, and purification followed by functional and structural characterization. The enzymes’ kinetic parameters, including Vmax, Km, and specific activity, were calculated. The PersiCel4 demonstrated its optimum activity at pH 8.5 and a temperature of 85 °C and was able to retain more than 70% of its activity after 150 h of storage at 85 °C. Furthermore, this enzyme was able to maintain its catalytic activity in the presence of different concentrations of NaCl and several metal ions contains Mg2+, Mn2+, Cu2+, Fe2+ and Ca2+. Our results showed that treatment with MnCl2 could enhance the enzyme’s activity by 78%. PersiCel4 was ultimately used for enzymatic hydrolysis of autoclave pretreated rice straw, the most abundant agricultural waste with rich cellulose content. In autoclave treated rice straw, enzymatic hydrolysis with the PersiCel4 increased the release of reducing sugar up to 260% after 72 h in the harsh condition (T = 85 °C, pH = 8.5). Conclusion Considering the urgent demand for stable cellulases that are operational on extreme temperature and pH conditions and due to several proposed distinctive characteristics of PersiCel4, it can be used in the harsh condition for bioconversion of lignocellulosic biomass.


2020 ◽  
Vol 71 (04) ◽  
pp. 309-320
Author(s):  
AURA SPINU ◽  
VLADIMIR CARDEI ◽  
VALERIU AVRAMESCU ◽  
IOANA ANDONE ◽  
AURELIA ROMILA ◽  
...  

The field of mechatronic/robotic wearable exoskeletons, specifically those designated for assistance/rehabilitation in severe neuro-/locomotor disabling conditions in the lower limbs, is considered to have a great potential for radically changing the harsh condition of wheelchairs users, by restoring their defining human traits: bipedal, vertical, stance and gait. But even the most advanced such complex devices, are not yet effectively able to largely replace the wheelchairs. Therefore, until the overall complete wheelchairs’ substitutes, will meet, in this purpose, all the necessary related requirements, we have determined, and accordingly, designed – from a double perspective: of professionals and of (a) consumer – a series of necessary and rather accessible/feasible, consistent: mechanical and electro-mechanical improvements, to the current common type of wheelchairs, in order to improve the global functioning, autonomy and consequently, the quality of life in the needing people, with severe mobility restraints. These, for now, narratively innovative concepts and specifically designed, practical/technological-constructive solutions, target 10 main kinds of beneficial outcomes, i.e. a decalogue and their derivatives to be expected (most of them previously imagined by us but not completely designed until now, two of them already achieved but which need updating and other four entirely new), that could result in an “all-in-one” product paradigm which, to our knowledge, is not available at present. This model of wheelchair we propose is, at the same time, modular, so a certain consumer can purchase/ be offered only his/her own case-specific needed optimization components of it


Author(s):  
Shohreh Ariaeenejad ◽  
Atefeh Sheykhabdolahzadeh ◽  
Morteza Maleki ◽  
Kaveh Kavousi ◽  
Mehdi Foroozandeh Shahraki ◽  
...  

Abstract Background: Lignocellulosic biomass, is a great resource for the production of bio-energy and bio-based material since it is largely abundant, inexpensive and renewable. The requirement of new energy sources has led to a wide search for novel effective enzymes to improve the exploitation of lignocellulose, among which the importance of thermostable and halotolerant cellulase enzymes with high pH performance is significant. Results: The primary aim of this study was to discover a novel alkali-thermostable endo-β-1,4-glucanase from the sheep rumen metagenome. Using a multi-step in-silico analysis, primary candidates with desired properties were found and subjected to cloning, expression, and purification followed by functional and structural characterization. The enzymes' kinetic parameters, including V max , Km, and specific activity, were calculated. The PersiCel4 demonstrated its optimum activity at pH 8.5 and a temperature of 85°C and was able to retain more than 70% of its activity after 150 hours of storage at 85°C. Furthermore, this enzyme was able to maintain its catalytic activity in the presence of different concentrations of NaCl, MgCl 2 , CaCl 2 , and MnCl 2 . Our results showed that treatment with MnCl 2 could enhance the enzyme’s activity by 89%. PersiCel4 was ultimately used for enzymatic hydrolysis of autoclave pretreated rice straw, the most abundant agricultural waste with rich cellulose content. In autoclave treated rice straw, enzymatic hydrolysis with the PersiCel4 increased the release of reducing sugar up to 260% after 72 hours in the harsh condition ( T= 85°C, pH = 8.5). Conclusion: Considering the urgent demand for stable cellulases that are operational on extreme temperature and pH conditions and due to several proposed distinctive characteristics of PersiCel4, it can be used in the harsh condition for bioconversion of lignocellulosic biomass.


Sign in / Sign up

Export Citation Format

Share Document