Elastoplastic State of Stress of a Plate with a Crack

2020 ◽  
Vol 2020 (10) ◽  
pp. 1065-1069
Author(s):  
I. A. Vasil’ev ◽  
S. A. Sokolov
2021 ◽  
Vol 2021 (4) ◽  
pp. 347-350
Author(s):  
S. A. Sokolov ◽  
I. A. Vasil’ev ◽  
A. A. Grachev

2013 ◽  
Vol 61 (1) ◽  
pp. 201-210 ◽  
Author(s):  
R. Studziński ◽  
Z. Pozorski ◽  
A. Garstecki

Abstract The paper addresses the problems of the sensitivity analysis and optimal design of multi-span sandwich panels with a soft core and flat thin steel facings. The response functional is formulated in a general form allowing wide practical applications. Sensitivity gradients of this functional with respect to dimensional, material and support parameters are derived using adjoint variable method. These operators account for the jump of the slope of a Timoshenko beam or a Reissner plate at the position of concentrated active load or reaction, thus extending the sensitivity operators known in literature. The jump of slope is the effect of shear deformation of the core. Special attention is focussed on sensitivity and optimisation allowing for variable support position and stiffness, because local phenomena observed in supporting area of sandwich plates often initiate failure mechanisms. Introducing optimally located elastic supports allows to reduce the unfavourable influence of temperature on the state of stress. Several examples illustrate the application of derived sensitivity operators and demonstrate their exactness


2017 ◽  
Vol 68 (6) ◽  
pp. 1267-1273
Author(s):  
Valeriu V. Jinescu ◽  
Angela Chelu ◽  
Gheorghe Zecheru ◽  
Alexandru Pupazescu ◽  
Teodor Sima ◽  
...  

In the paper the interaction of several loads like pressure, axial force, bending moment and torsional moment are analyzed, taking into account the deterioration due to cracks and the influence of residual stresses. A nonlinear, power law, of structure material is considered. General relationships for total participation of specific energies introduced in the structure by the loads, as well as for the critical participation have been proposed. On these bases: - a new strength calculation methods was developed; � strength of tubular cracked structures and of cracked tubular junction subjected to combined loading and strength were analyzed. Relationships for critical state have been proposed, based on dimensionless variables. These theoretical results fit with experimental date reported in literature. On the other side stress concentration coefficients were defined. Our one experiments onto a model of a pipe with two opposite nozzles have been achieved. Near one of the nozzles is a crack on the run pipe. Trough the experiments the state of stress have been obtained near the tubular junction, near the tip of the crack and far from the stress concentration points. On this basis the stress concentration coefficients were calculated.


2020 ◽  
Vol 2020 (13) ◽  
pp. 1658-1662
Author(s):  
A. A. Skvortsov ◽  
S. M. Zuev ◽  
M. V. Koryachko ◽  
E. B. Voloshinov

Author(s):  
Nils Cwiekala ◽  
David A Hills

The state of stress present in an elastic half-plane contact problem, where one or both bodies is subject to remote tension has been investigated, both for conditions of full stick and partial slip. The state of stress present near the contact edges is studied for different loading scenarios in an asymptotic form. This is of practical relevance to the study of contacts experiencing fretting fatigue, and enables the environment in which cracks nucleate to be specified.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 447
Author(s):  
Julian M. E. Marques ◽  
Denis Benasciutti ◽  
Adam Niesłony ◽  
Janko Slavič

This paper presents an overview of fatigue testing systems in high-cycle regime for metals subjected to uniaxial and multiaxial random loadings. The different testing systems are critically discussed, highlighting advantages and possible limitations. By identifying relevant features, the testing systems are classified in terms of type of machine (servo-hydraulic or shaker tables), specimen geometry and applied constraints, number of load or acceleration inputs needed to perform the test, type of loading acting on the specimen and resulting state of stress. Specimens with plate, cylindrical and more elaborated geometry are also considered as a further classification criterion. This review also discusses the relationship between the applied input and the resulting local state of stress in the specimen. Since a general criterion to classify fatigue testing systems for random loadings seems not to exist, the present review—by emphasizing analogies and differences among various layouts—may provide the reader with a guideline to classify future equipment.


Sign in / Sign up

Export Citation Format

Share Document