Study of the Kinetics of Metastable Molecular Nitrogen in the Atmospheres of the Earth, Triton, Titan, and Pluto

2020 ◽  
Vol 54 (1) ◽  
pp. 28-33
Author(s):  
A. S. Kirillov
2020 ◽  
Author(s):  
A.S. Kirillov ◽  
◽  
R. Werner ◽  
V. Guineva ◽  
◽  
...  

We study the electronic kinetics of molecular nitrogen and molecular oxygen in the middle atmosphere of the Earth during precipitations of high-energetic protons and electrons.The role of molecular inelastic collisions in intermolecularelectron energy transfer processes is investigated.It is shown that inelastic molecular collisions influence on vibrational populations of electronically excited molecular oxygen. It is pointed out on very important role of the collisions of N2(A3u+) with O2molecules on the electronic excitation of Herzberg states of molecular oxygenat the altitudes of the middle atmosphere.


2022 ◽  
Author(s):  
Ulysse Dubuet ◽  
Pierre Mariotto ◽  
Christophe O. Laux ◽  
Marie-Yvonne Perrin

2018 ◽  
Vol 15 (30) ◽  
pp. 647-653
Author(s):  
J. H. M. SANTOS ◽  
P. C. M. SANTOS ◽  
F. T. VIEIRA ◽  
J. D. FABRIS ◽  
A. B. REIS ◽  
...  

Currently the mining industry plays an important role in the generation of wealth of a country through the exploitation of natural resources of the earth, and in some cases, responsible for a significant fraction of the economic matrix. Like any other industrial activity, mining has a negative impact on the environment, which leads the industry to constantly face the challenge of achieving the sustainability of its activities. The study aimed to characterize the iron ore reject seeking the feasibility of reprocessing and water recovery. The reject sample was characterized using Scanning Electron Microscopy with Dispersive Energy Spectrometer. Studies of the sedimentation kinetics of the tailings were carried out to implement techniques to recover the iron present in the tailings and recycle water in the mineral processing. In the sedimentation tests it was possible to recover approximately 50% of water without compromising the transport operations of the material. It can be concluded that the ore reject analyzed is composed mainly of Fe and Si respectively, showing that the reject has reprocessing potential, and recovery of water present in the clarified.


1989 ◽  
Vol 39 (4) ◽  
pp. 415-426 ◽  
Author(s):  
K. Rohlena ◽  
K. Mašek

2020 ◽  
Vol 8 (10) ◽  
pp. 4662-4668
Author(s):  
Amit Mishra ◽  
Neha Prajapati ◽  
Mukesh Chaudhari ◽  
Amit Sharma

Ayurvedic system of medicine is the only one out of all traditional system of medicine where importance of metals for curing ailments was probably first recognized. Iron is the fourth common element and second most common metal in the earth crust and is a biologically essential component of every living organism. Despite the low requirement of iron in human body iron overload is rare and iron deficiency is common in certain parts of the world and in certain age groups6. Iron containing drugs used as hematinics are known to induce some adverse drug reactions -- gastrointestinal symptoms (nausea, vomiting, epigastric pain, colic pain, flatulence, constipation, black feces, and diarrhea. Iron containing compounds like Loha Bhasma, Kasis Bhasma and Mandura Bahsma are practiced since long and are indicated in a wide spectrum of dis-eases and can be a better alternative from Rasa shastra. Pharmacokinetics is proposed to study the absorp-tion, the distribution, the bio transformations and the elimination of drugs in man and animals. A primary aim of pharmacokinetics analyses is to determine bioavailability. Evaluation of Pharmaco kinetics of Loha bhasma, Kasis bhasma and Mandura bhasma were carried out. Serum iron was estimated using AAS. Pa-rameters like Cmax, Tmax etc. were calculated


1970 ◽  
Vol 48 (23) ◽  
pp. 3613-3618 ◽  
Author(s):  
B. C. Hui ◽  
B. R. James

The kinetics of formation of mono- and dicarbonyl complexes in two successive stages by direct carbonylation of ruthenium(II) chlorides in dimethylacetamide solution have been studied at 65–80° and up to 1 atm CO by gas uptake techniques. Both stages are first order in ruthenium. Formation of the monocarbonyl is independent of CO pressure; dicarbonyl formation is first order in CO at low pressures with the order decreasing towards zero with increasing pressure, and shows an inverse chloride dependence from 0.1–2.0 M added chloride. For both stages, the data are consistent with a mechanism involving predissociation. A similar mechanism is suggested for the corresponding reactions in 3 M HCl solution which had been studied earlier and which showed overall second-order kinetics.Discussion on the related formation of molecular nitrogen complexes of ruthenium(II) is presented.


2015 ◽  
Vol 11 (S320) ◽  
pp. 409-415 ◽  
Author(s):  
Vladimir Airapetian ◽  
Alex Glocer ◽  
Guillaume Gronoff

AbstractKepler observations suggest that G-type stars produce powerful flares suggesting that the early Earth may also have been exposed to frequent and energetic solar explosive events generated by the young Sun. We show that powerful coronal mass ejection (CME) events associated with superflares impacting the Earth magnetosphere with a frequency of 1 event/day. What was the impact of superflares, CMEs and associated solar energetic particle (SEPs) events on the atmospheric erosion of the young Earth and habitability? In this paper we discuss our three-dimensional (3D) magnetohydrodynamic (MHD) simulations that show that frequent and energetic CMEs from the early Sun continuously destroyed the sub-solar parts of Earth's magnetosphere at heights < 1.25 RE. This suggests that CME shock accelerated energetic protons are capable of penetrating into the polar cap region and breaking atmospheric molecular nitrogen, the major ingredient of the early Earth atmosphere, into atomic nitrogen. Photo-collisional dissociation of molecular nitrogen and carbon dioxide creates reactive chemistry that efficiently produces nitrous oxide and hydrogen cyanide, the essential molecule in prebiotic life chemistry. This raises an possibility that frequent super-CMEs could serve as a potential catalyst for the origin of life on early Earth.


1999 ◽  
Vol 9 ◽  
pp. 221-240 ◽  
Author(s):  
David W. Deamer

Movies are the myths of late-20th century western culture. Because of the power of films likeETto capture our imagination, we are more likely than past generations to accept the possibility that life exists elsewhere in our galaxy. Such a myth can be used to sketch the main themes of this chapter, which concern the origin of life on the Earth.Imagine that 4 billion years ago, intelligent beings evolved on an Earth-like planet in the solar system of a neighboring star. After ten million years of evolution, they have solved the problems of interstellar travel and aging. Virtually immortal family groups set out to explore the galaxy and almost immediately discover a solar system associated with a nearby star only 80 light years away from their home planet. They find that the third planet is rich in the primary elements of life - carbon, hydrogen, oxygen and nitrogen - which are present in the atmosphere in the form of carbon dioxide (CO2), molecular nitrogen (N2) and water vapor (H2O). They decide to spend a few centuries studying this planet, which they consider to be a possible model of their own primordial world as it was four billion years in their past.


Sign in / Sign up

Export Citation Format

Share Document