scholarly journals On the equivalence of approximate stationary axially symmetric solutions of the Einstein field equations

2016 ◽  
Vol 22 (4) ◽  
pp. 305-311 ◽  
Author(s):  
Kuantay Boshkayev ◽  
Hernando Quevedo ◽  
Saken Toktarbay ◽  
Bakytzhan Zhami ◽  
Medeu Abishev
2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Faizuddin Ahmed

We present a gravitational collapse null dust solution of the Einstein field equations. The space-time is regular everywhere except on the symmetry axis where it possesses a naked curvature singularity and admits one parameter isometry group, a generator of axial symmetry along the cylinder which has closed orbits. The space-time admits closed timelike curves (CTCs) which develop at some particular moment in a causally well-behaved manner and may represent a Cosmic Time Machine. The radial geodesics near the singularity and the gravitational lensing (GL) will be discussed. The physical interpretation of this solution, based on the study of the equation of the geodesic deviation, will be presented. It was demonstrated that this solution depends on the local gravitational field consisting of two components with amplitudes Ψ2 and Ψ4.


2017 ◽  
Vol 14 (04) ◽  
pp. 1750053 ◽  
Author(s):  
Saeed Nayeh ◽  
Mehrdad Ghominejad

In this paper, we obtain the field equations of Weyl static axially symmetric space-time in the framework of [Formula: see text] gravity, where [Formula: see text] is torsion scalar. We will see that, for [Formula: see text] related to teleparallel equivalent general relativity, these equations reduce to Einstein field equations. We show that if the components of energy–momentum tensor are symmetric, the scalar torsion must be either constant or only a function of radial component [Formula: see text]. The solutions of some functions [Formula: see text] in which [Formula: see text] is a function of [Formula: see text] are obtained.


2004 ◽  
Vol 13 (09) ◽  
pp. 1823-1830 ◽  
Author(s):  
A. V. KHUGAEV ◽  
B. J. AHMEDOV

Class of axially symmetric solutions of vacuum Einstein field equations including the Papapetrou solution as particular case has been found. It has been shown that the derived solution describes the external axial symmetric gravitational field of the source with nonvanishing mass. The general solution is obtained for this class of functions. As an example of physical application, the spacetime metric outside a line gravitomagnetic monopole has been obtained from Papapetrou solution of vacuum equations of gravitational field.


2015 ◽  
Vol 2015 ◽  
pp. 1-8
Author(s):  
Gamal G. L. Nashed

We apply a tetrad field with six unknown functions to Einstein field equations. Exact vacuum solution, which represents axially symmetric-dS spacetime, is derived. We multiply the tetrad field of the derived solution by a local Lorentz transformation which involves a generalization of the angleϕand get a new tetrad field. Using this tetrad, we get a differential equation from the scalar torsionT=TαμνSαμν. Solving this differential equation we obtain a solution to thef(T)gravity theories under certain conditions on the form off(T)and its first derivatives. Finally, we calculate the scalars of Riemann Christoffel tensor, Ricci tensor, Ricci scalar, torsion tensor, and its contraction to explain the singularities associated with this solution.


Synthese ◽  
2021 ◽  
Author(s):  
Antonio Vassallo

AbstractThe dynamics of general relativity is encoded in a set of ten differential equations, the so-called Einstein field equations. It is usually believed that Einstein’s equations represent a physical law describing the coupling of spacetime with material fields. However, just six of these equations actually describe the coupling mechanism: the remaining four represent a set of differential relations known as Bianchi identities. The paper discusses the physical role that the Bianchi identities play in general relativity, and investigates whether these identities—qua part of a physical law—highlight some kind of a posteriori necessity in a Kripkean sense. The inquiry shows that general relativistic physics has an interesting bearing on the debate about the metaphysics of the laws of nature.


2019 ◽  
Vol 15 (S356) ◽  
pp. 383-384
Author(s):  
Seman Abaraya ◽  
Tolu Biressa

AbstractCompact objects are of great interest in astrophysical research. There are active research interests in understanding better various aspects of formation and evolution of these objects. In this paper we addressed some problems related to the compact objects mass limit. We employed Einstein field equations (EFEs) to derive the equation of state (EoS). With the assumption of high densities and low temperature of compact sources, the derived equation of state is reduced to polytropic kind. Studying the polytropic equations we obtained similar physical implications, in agreement to previous works. Using the latest version of Mathematica-11 in our numerical analysis, we also obtained similar results except slight differences in accuracy.


Solutions of the Einstein field equations are found for the problem of a sphere of constant density surrounded by matter of different constant density. The solutions are discussed and particular attention paid to the topology of the surrounding matter. The Schwarzschild, de Sitter, and Einstein solutions emerge as particular cases of the general problem.


2005 ◽  
Vol 14 (03n04) ◽  
pp. 667-676 ◽  
Author(s):  
S. D. MAHARAJ ◽  
M. GOVENDER

In a recent approach in modeling a radiating relativistic star undergoing gravitational collapse the role of the Weyl stresses was emphasized. It is possible to generate a model which is physically reasonable by approximately solving the junction conditions at the boundary of the star. In this paper we demonstrate that it is possible to solve the Einstein field equations and the junction conditions exactly. This exact solution contains the Friedmann dust solution as a limiting case. We briefly consider the radiative transfer within the framework of extended irreversible thermodynamics and show that relaxational effects significantly alter the temperature profiles.


Sign in / Sign up

Export Citation Format

Share Document