scholarly journals Mass-radius relation of compact objects

2019 ◽  
Vol 15 (S356) ◽  
pp. 383-384
Author(s):  
Seman Abaraya ◽  
Tolu Biressa

AbstractCompact objects are of great interest in astrophysical research. There are active research interests in understanding better various aspects of formation and evolution of these objects. In this paper we addressed some problems related to the compact objects mass limit. We employed Einstein field equations (EFEs) to derive the equation of state (EoS). With the assumption of high densities and low temperature of compact sources, the derived equation of state is reduced to polytropic kind. Studying the polytropic equations we obtained similar physical implications, in agreement to previous works. Using the latest version of Mathematica-11 in our numerical analysis, we also obtained similar results except slight differences in accuracy.

2009 ◽  
Vol 18 (03) ◽  
pp. 389-396 ◽  
Author(s):  
UTPAL MUKHOPADHYAY ◽  
P. C. RAY ◽  
SAIBAL RAY ◽  
S. B. DUTTA CHOUDHURY

Einstein field equations under spherically symmetric space–times are considered here in connection with dark energy investigation. A set of solutions is obtained for a kinematic Λ model, viz. [Formula: see text], without assuming any a priori value for the curvature constant and the equation-of-state parameter ω. Some interesting results, such as the nature of cosmic density Ω and deceleration parameter q, have been obtained with the consideration of two-fluid structure instead of the usual unifluid cosmological model.


Universe ◽  
2019 ◽  
Vol 6 (1) ◽  
pp. 7 ◽  
Author(s):  
Hervé Bergeron ◽  
Ewa Czuchry ◽  
Jean Pierre Gazeau ◽  
Przemysław Małkiewicz

The Mixmaster solution to Einstein field equations was examined by C. Misner in an effort to better understand the dynamics of the early universe. We highlight the importance of the quantum version of this model for the early universe. This quantum version and its semi-classical portraits are yielded through affine and standard coherent state quantizations and more generally affine and Weyl–Heisenberg covariant integral quantizations. The adiabatic and vibronic approximations widely used in molecular physics can be employed to qualitatively study the dynamics of the model on both quantum and semi-classical levels. Moreover, the semi-classical approach with the exact anisotropy potential can be effective in the numerical integration of some solutions. Some promising physical features such as the singularity resolution, smooth bouncing, the excitation of anisotropic oscillations and a substantial amount of post-bounce inflation as the backreaction to the latter are pointed out. Finally, a realistic cosmological scenario based on the quantum mixmaster model, which includes the formation and evolution of local structures is outlined.


2021 ◽  
Vol 18 (2 Jul-Dec) ◽  
pp. 020208
Author(s):  
E. Chávez Nambo ◽  
O. Sarbach

In this article, we provide a pedagogical review of the Tolman-Oppenheimer-Volkoff (TOV) equation and its solutions which describe static, spherically symmetric gaseous stars in general relativity. Our discussion starts with a systematic derivation of the TOV equation from the Einstein field equations and the relativistic Euler equations. Next, we give a proof for the existence and uniqueness of solutions of the TOV equation describing a star of finite radius, assuming suitable conditions on the equation of state characterizing the gas. We also prove that the compactness of the gas contained inside a sphere centered at the origin satisfies the well-known Buchdahl bound, independent of the radius of the sphere. Further, we derive the equation of state for an ideal, classical monoatomic relativistic gas from statistical mechanics considerations and show that it satisfies our assumptions for the existence of a unique solution describing a finite radius star. Although none of the results discussed in this article are new, they are usually scattered in different articles and books in the literature; hence it is our hope that this article will provide a self-contained and useful introduction to the topic of relativistic stellar models.


2019 ◽  
Vol 34 (29) ◽  
pp. 1950179 ◽  
Author(s):  
Satyanarayana Gedela ◽  
Neeraj Pant ◽  
R. P. Pant ◽  
Jaya Upreti

In this paper, we study the behavior of static spherically symmetric relativistic model of the strange star SAX J1808.4-3658 by exploring a new exact solution for anisotropic matter distribution. We analyze the comprehensive structure of the space–time within the stellar configuration by using the Einstein field equations amalgamated with quadratic equation of state (EoS). Further, we compare solutions of quadratic EoS model with modified Bose–Einstein condensation EoS and linear EoS models which can be generated by a suitable choice of parameters in quadratic EoS model. Subsequently, we compare the properties of strange star SAX J1808.4-3658 for all the three EoS models with the help of graphical representations.


2018 ◽  
Vol 27 (07) ◽  
pp. 1850065 ◽  
Author(s):  
M. Sharif ◽  
Aisha Siddiqa

This paper is devoted to study the compact objects whose pressure and density are related through polytropic equation-of-state (EoS) and MIT bag model (for quark stars) in the background of [Formula: see text] gravity. We solve the field equations together with the hydrostatic equilibrium equation numerically for the model [Formula: see text] and discuss physical properties of the resulting solution. It is observed that for both types of stars (polytropic and quark stars), the effects of model parameters [Formula: see text] and [Formula: see text] remain the same. We also obtain that the energy conditions are satisfied and stellar configurations are stable for both EoS.


Synthese ◽  
2021 ◽  
Author(s):  
Antonio Vassallo

AbstractThe dynamics of general relativity is encoded in a set of ten differential equations, the so-called Einstein field equations. It is usually believed that Einstein’s equations represent a physical law describing the coupling of spacetime with material fields. However, just six of these equations actually describe the coupling mechanism: the remaining four represent a set of differential relations known as Bianchi identities. The paper discusses the physical role that the Bianchi identities play in general relativity, and investigates whether these identities—qua part of a physical law—highlight some kind of a posteriori necessity in a Kripkean sense. The inquiry shows that general relativistic physics has an interesting bearing on the debate about the metaphysics of the laws of nature.


Solutions of the Einstein field equations are found for the problem of a sphere of constant density surrounded by matter of different constant density. The solutions are discussed and particular attention paid to the topology of the surrounding matter. The Schwarzschild, de Sitter, and Einstein solutions emerge as particular cases of the general problem.


2005 ◽  
Vol 14 (03n04) ◽  
pp. 667-676 ◽  
Author(s):  
S. D. MAHARAJ ◽  
M. GOVENDER

In a recent approach in modeling a radiating relativistic star undergoing gravitational collapse the role of the Weyl stresses was emphasized. It is possible to generate a model which is physically reasonable by approximately solving the junction conditions at the boundary of the star. In this paper we demonstrate that it is possible to solve the Einstein field equations and the junction conditions exactly. This exact solution contains the Friedmann dust solution as a limiting case. We briefly consider the radiative transfer within the framework of extended irreversible thermodynamics and show that relaxational effects significantly alter the temperature profiles.


2017 ◽  
Vol 15 (01) ◽  
pp. 1830001 ◽  
Author(s):  
G. S. Khadekar ◽  
Deepti Raut

In this paper, we present two viscous models of non-perfect fluid by avoiding the introduction of exotic dark energy. We consider the first model in terms of deceleration parameter [Formula: see text] has a viscosity of the form [Formula: see text] and the other model in quadratic form of [Formula: see text] of the type [Formula: see text]. In this framework we find the solutions of field equations by using inhomogeneous equation of state of form [Formula: see text] with equation of state parameter [Formula: see text] is constant and [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document