The role of blood-brain barrier in the development of childhood febrile seizures and temporal lobe epilepsy

2016 ◽  
Vol 42 (5) ◽  
pp. 579-584
Author(s):  
K. R. Abbasova ◽  
A. M. Zybina ◽  
K. N. Kulichenkova ◽  
R. V. Solodkov
2007 ◽  
Vol 7 (4) ◽  
pp. 105-107 ◽  
Author(s):  
Damir Janigro

Blood-Brain Barrier Leakage May Lead to Progression of Temporal Lobe Epilepsy. van Vliet EA, da Costa Araujo S, Redeker S, van Schaik R, Aronica E, Gorter JA. Brain 2007;130(Pt 2):521–534. Leakage of the blood–brain barrier (BBB) is associated with various neurological disorders, including temporal lobe epilepsy (TLE). However, it is not known whether alterations of the BBB occur during epileptogenesis and whether this can affect progression of epilepsy. We used both human and rat epileptic brain tissue and determined BBB permeability using various tracers and albumin immunocytochemistry. In addition, we studied the possible consequences of BBB opening in the rat for the subsequent progression of TLE. Albumin extravasation in human was prominent after status epilepticus (SE) in astrocytes and neurons, and also in hippocampus of TLE patients. Similarly, albumin and tracers were found in microglia, astrocytes and neurons of the rat. The BBB was permeable in rat limbic brain regions shortly after SE, but also in the latent and chronic epileptic phase. BBB permeability was positively correlated to seizure frequency in chronic epileptic rats. Artificial opening of the BBB by mannitol in the chronic epileptic phase induced a persistent increase in the number of seizures in the majority of rats. These findings indicate that BBB leakage occurs during epileptogenesis and the chronic epileptic phase and suggest that this can contribute to the progression of epilepsy. TGF-Beta Receptor-Mediated Albumin Uptake into Astrocytes Is Involved in Neocortical Epileptogenesis. Ivens S, Kaufer D, Flores LP, Bechmann I, Zumsteg D, Tomkins O, Seiffert E, Heinemann U, Friedman A. Brain 2007; 130(Pt 2):535–547. It has long been recognized that insults to the cerebral cortex, such as trauma, ischaemia or infections, may result in the development of epilepsy, one of the most common neurological disorders. Human and animal studies have suggested that perturbations in neurovascular integrity and breakdown of the blood–brain barrier (BBB) lead to neuronal hypersynchronization and epileptiform activity, but the mechanisms underlying these processes are not known. In this study, we reveal a novel mechanism for epileptogenesis in the injured brain. We used focal neocortical, long-lasting BBB disruption or direct exposure to serum albumin in rats (51 and 13 animals, respectively, and 26 controls) as well as albumin exposure in brain slices in vitro. Most treated slices (72%, n = 189) displayed hypersynchronous propagating epileptiform field potentials when examined 5–49 days after treatment, but only 14% ( n = 71) of control slices showed similar responses. We demonstrate that direct brain exposure to serum albumin is associated with albumin uptake into astrocytes, which is mediated by transforming growth factor β receptors (TGF- βRs). This uptake is followed by down regulation of inward-rectifying potassium (Kir 4.1) channels in astrocytes, resulting in reduced buffering of extracellular potassium. This, in turn, leads to activity-dependent increased accumulation of extracellular potassium, resulting in facilitated N-methyl-D-aspartate-receptor-mediated neuronal hyperexcitability and eventually epileptiform activity. Blocking TGF- βR in vivo reduces the likelihood of epileptogenesis in albumin-exposed brains to 29.3% ( n = 41 slices, P < 0.05). We propose that the above-described cascade of events following common brain insults leads to brain dysfunction and eventually epilepsy and suggest TGF- βRs as a possible therapeutic target.


Brain ◽  
2007 ◽  
Vol 130 (7) ◽  
pp. 1942-1956 ◽  
Author(s):  
V. Rigau ◽  
M. Morin ◽  
M.-C. Rousset ◽  
F. de Bock ◽  
A. Lebrun ◽  
...  

Brain ◽  
2007 ◽  
Vol 130 (2) ◽  
pp. 521-534 ◽  
Author(s):  
E. A. van Vliet ◽  
S. da Costa Araujo ◽  
S. Redeker ◽  
R. van Schaik ◽  
E. Aronica ◽  
...  

Therapy ◽  
2006 ◽  
Vol 3 (1) ◽  
pp. 97-112 ◽  
Author(s):  
Rose Marie Tyson ◽  
Dale F Kraemer ◽  
Matthew A Hunt ◽  
Leslie L Muldoon ◽  
Peter Orbay ◽  
...  

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Sarinnapha M. Vasunilashorn ◽  
◽  
Long H. Ngo ◽  
Simon T. Dillon ◽  
Tamara G. Fong ◽  
...  

Abstract Background Our understanding of the relationship between plasma and cerebrospinal fluid (CSF) remains limited, which poses an obstacle to the identification of blood-based markers of neuroinflammatory disorders. To better understand the relationship between peripheral and central nervous system (CNS) markers of inflammation before and after surgery, we aimed to examine whether surgery compromises the blood-brain barrier (BBB), evaluate postoperative changes in inflammatory markers, and assess the correlations between plasma and CSF levels of inflammation. Methods We examined the Role of Inflammation after Surgery for Elders (RISE) study of adults aged ≥ 65 who underwent elective hip or knee surgery under spinal anesthesia who had plasma and CSF samples collected at baseline and postoperative 1 month (PO1MO) (n = 29). Plasma and CSF levels of three inflammatory markers previously identified as increasing after surgery were measured using enzyme-linked immunosorbent assay: interleukin-6 (IL-6), C-reactive protein (CRP), and chitinase 3-like protein (also known as YKL-40). The integrity of the BBB was computed as the ratio of CSF/plasma albumin levels (Qalb). Mean Qalb and levels of inflammation were compared between baseline and PO1MO. Spearman correlation coefficients were used to determine the correlation between biofluids. Results Mean Qalb did not change between baseline and PO1MO. Mean plasma and CSF levels of CRP and plasma levels of YKL-40 and IL-6 were higher on PO1MO relative to baseline, with a disproportionally higher increase in CRP CSF levels relative to plasma levels (CRP tripled in CSF vs. increased 10% in plasma). Significant plasma-CSF correlations for CRP (baseline r = 0.70 and PO1MO r = 0.89, p < .01 for both) and IL-6 (PO1MO r = 0.48, p < .01) were observed, with higher correlations on PO1MO compared with baseline. Conclusions In this elective surgical sample of older adults, BBB integrity was similar between baseline and PO1MO, plasma-CSF correlations were observed for CRP and IL-6, plasma levels of all three markers (CRP, IL-6, and YKL-40) increased from PREOP to PO1MO, and CSF levels of only CRP increased between the two time points. Our identification of potential promising plasma markers of inflammation in the CNS may facilitate the early identification of patients at greatest risk for neuroinflammation and its associated adverse cognitive outcomes.


Sign in / Sign up

Export Citation Format

Share Document