Cold rolling for controllable narrowing of pore size and pore size distribution of commercial fluoroplastic microfiltration membrane

2014 ◽  
Vol 54 (7) ◽  
pp. 568-572 ◽  
Author(s):  
G. A. Dibrov ◽  
E. G. Novitsky ◽  
V. P. Vasilevsky ◽  
V. V. Volkov
Membranes ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 532
Author(s):  
Jingyi Sun ◽  
Shan Liu ◽  
Jing Kang ◽  
Zhonglin Chen ◽  
Liming Cai ◽  
...  

In this study, a low-cost cementitious microfiltration membrane (CM) with a catalytic ozone oxidation function for the removal of organic pollutants was fabricated by using cementitious and C-10 μm silica powders at a certain silica–cementitious particle ratio (s/c). The effect of the s/c on the pore size distribution and mechanical strength of the membrane was investigated. The membrane pore size showed a bimodal distribution, and the higher the s/c, the closer the second peak was to the accumulated average particle size of silica. The increase in the s/c led to a decrease in the bending strength of the membrane. The cross-sectional morphology by SEM and crystal structure by XRD of CMs confirmed that a calcium silicate hydrate gel was generated around the silica powder to improve the mechanical strength of the CM. Considering the bending strength and pore size distribution of CMs, s/c = 0.5 was selected as the optimal membrane fabrication condition. The FT-IR results characterizing the surface functional groups of CMs were rich in surface hydroxyl groups with the ability to catalyze ozone oxidation for organic pollutant removal. Six small molecule organic pollutants were selected as model compounds for the efficiency experiments via a CM‒ozone coupling process to prove the catalytic property of the CM. The CM has an alkaline buffering effect and can stabilize the initial pH of the solution in the catalytic ozonation process. The reuse experiments of the CM‒ozone coupling process demonstrated the broad spectrum of the CM catalytic performance and self-cleaning properties. The results of this study provide the basis and experimental support to expand the practical application of CMs.


2019 ◽  
Author(s):  
Paul Iacomi ◽  
Philip L. Llewellyn

Material characterisation through adsorption is a widely-used laboratory technique. The isotherms obtained through volumetric or gravimetric experiments impart insight through their features but can also be analysed to determine material characteristics such as specific surface area, pore size distribution, surface energetics, or used for predicting mixture adsorption. The pyGAPS (python General Adsorption Processing Suite) framework was developed to address the need for high-throughput processing of such adsorption data, independent of the origin, while also being capable of presenting individual results in a user-friendly manner. It contains many common characterisation methods such as: BET and Langmuir surface area, t and α plots, pore size distribution calculations (BJH, Dollimore-Heal, Horvath-Kawazoe, DFT/NLDFT kernel fitting), isosteric heat calculations, IAST calculations, isotherm modelling and more, as well as the ability to import and store data from Excel, CSV, JSON and sqlite databases. In this work, a description of the capabilities of pyGAPS is presented. The code is then be used in two case studies: a routine characterisation of a UiO-66(Zr) sample and in the processing of an adsorption dataset of a commercial carbon (Takeda 5A) for applications in gas separation.


Author(s):  
Hong Qian ◽  
Ying Fang ◽  
Kao Wu ◽  
Hao Wang ◽  
Bin Li ◽  
...  

Abstract This study presents two methods to improve the air filtration performance of konjac glucomannan (KGM)-based aerogel air filters through physical structure design by changing the pore-size distribution and the surface area, using an air purifier. Results indicated that KGM-based aerogels had a comparable filtration effect with the commercial air filter with a longer purification time. This purification time could be shortened by over 50%, by changing the pore-size distribution from large size to small size or increase the surface area with the fold structure. This should boost the development of polysaccharide-based aerogel used as the air filter.


Sign in / Sign up

Export Citation Format

Share Document