Using a Single Set of Structural and Kinetic Parameters of the Microheterogeneous Model to Describe the Sorption and Kinetic Properties of Ion-Exchange Membranes

2018 ◽  
Vol 58 (6) ◽  
pp. 465-473 ◽  
Author(s):  
N. D. Pismenskaya ◽  
E. E. Nevakshenova ◽  
V. V. Nikonenko
Membranes ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 406
Author(s):  
Denis Davydov ◽  
Elena Nosova ◽  
Sergey Loza ◽  
Aslan Achoh ◽  
Alexander Korzhov ◽  
...  

The paper shows the possibility of using a microheterogeneous model to estimate the transport numbers of counterions through ion-exchange membranes. It is possible to calculate the open-circuit potential and power density of the reverse electrodialyzer using the data obtained. Eight samples of heterogeneous ion-exchange membranes were studied, two samples for each of the following types of membranes: Ralex CM, Ralex AMH, MK-40, and MA-41. Samples in each pair differed in the year of production and storage conditions. In the work, these samples were named “batch 1” and “batch 2”. According to the microheterogeneous model, to calculate the transport numbers of counterions, it is necessary to use the concentration dependence of the electrical conductivity and diffusion permeability. The electrolyte used was a sodium chloride solution with a concentration range corresponding to the conditional composition of river water and the salinity of the Black Sea. During the research, it was found that samples of Ralex membranes of different batches have similar characteristics over the entire range of investigated concentrations. The calculated values of the transfer numbers for membranes of different batches differ insignificantly: ±0.01 for Ralex AMH in 1 M NaCl. For MK-40 and MA-41 membranes, a significant scatter of characteristics was found, especially in concentrated solutions. As a result, in 1 M NaCl, the transport numbers differ by ±0.05 for MK-40 and ±0.1 for MA-41. The value of the open circuit potential for the Ralex membrane pair showed that the experimental values of the potential are slightly lower than the theoretical ones. At the same time, the maximum calculated power density is higher than the experimental values. The maximum power density achieved in the experiment on reverse electrodialysis was 0.22 W/m2, which is in good agreement with the known literature data for heterogeneous membranes. The discrepancy between the experimental and theoretical data may be the difference in the characteristics of the membranes used in the reverse electrodialysis process from the tested samples and does not consider the shadow effect of the spacer in the channels of the electrodialyzer.


Membranes ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 84 ◽  
Author(s):  
Sarapulova ◽  
Shkorkina ◽  
Mareev ◽  
Pismenskaya ◽  
Kononenko ◽  
...  

Ion-exchange membranes (IEMs) find more and more applications; the success of an application depends on the properties of the membranes selected for its realization. For the first time, the results of a comprehensive characterization of the transport properties of IEMs from three manufactures (Astom, Japan; Shchekinoazot, Russia; and Fujifilm, The Netherlands) are reported. Our own and literature data are presented and analyzed using the microheterogeneous model. Homogeneous Neosepta AMX and CMX (Astom), heterogeneous MA-41 and MK-40 (Shchekinoazot), and AEM Type-I, AEM Type-II, AEM Type-X, as well as CEM Type-I, CEM Type-II, and CEM Type-X produced by the electrospinning method (Fujifim) were studied. The concentration dependencies of the conductivity, diffusion permeability, as well as the real and apparent ion transport numbers in these membranes were measured. The counterion transport number characterizing the membrane permselectivity increases in the following order: CEM Type-I MA-41 < AEM Type-I < MK-40<CMX CEM Type-II CEM Type-X AEM Type-II < AMX < AEM Type-X. It is shown that the properties of the AEM Type-I and CEM Type-I membranes are close to those of the heterogeneous MA-41 and MK-40 membranes, while the properties of Fujifilm Type-II and Type-X membranes are close to those of the homogeneous AMX and CMX membranes. This difference is related to the fact that the Type-I membranes have a relatively high parameter f2, the volume fraction of the electroneutral solution filling the intergel spaces. This high value is apparently due to the open-ended pores, formed by the reinforcing fabric filaments of the Type-I membranes, which protrude above the surface of these membranes.


2021 ◽  
Vol 8 (2) ◽  
pp. 20218205
Author(s):  
A. N. Korzhov ◽  
A. R. Achoh ◽  
S. A. Loza ◽  
E. N. Nosova ◽  
D. V. Davidov ◽  
...  

This paper shows the possibility of using a microheterogeneous model to describe the properties of ion-exchange membranes and calculate the characteristics of a reverse electrodialyzer from the data obtained. We studied the properties of eight samples of heterogeneous cation exchange membranes (two samples of each type of membrane). The samples differed in the year of issue and storage conditions. It is shown that for heterogeneous ion-exchange membranes MK-40 and MA-41, the samples' properties can differ significantly. The counterions transport numbers calculated within the framework of the microheterogeneous model for Ralex membranes differ insignificantly. The counterion transport number in 1 mol/L sodium chloride solution is 0.96 for Ralex CM and 0.98 ± 0.01 for Ralex AMH. For the MK-40 membrane, the transport number in the same solution is 0.94 ± 0.04, and for the MA-41 membrane, it is 0.85 ± 0.1. The possibility of calculating the transport numbers and predicting the open-circuit voltage based on simple physicochemical measurements allows selecting the best membrane pairs for the reverse electrodialysis process. Comparison of the open-circuit potential value calculated using the obtained transfer numbers with experimental data showed that in the case of using Ralex membranes, the difference between the experimental and calculated values is 2%. The calculated value of the open circuit potential was 0.19 V/membrane pair or 1.69 V for the investigated reverse electrodialyzer with nine pair chambers.


1992 ◽  
Vol 57 (9) ◽  
pp. 1905-1914
Author(s):  
Miroslav Bleha ◽  
Věra Šumberová

The equilibrium sorption of uni-univalent electrolytes (NaCl, KCl) in heterogeneous cation exchange membranes with various contents of the ion exchange component and in ion exchange membranes Ralex was investigated. Using experimental data which express the concentration dependence of equilibrium sorption, validity of the Donnan relation for the systems under investigation was tested and values of the Glueckauf inhomogeneity factor for Ralex membranes were determined. Determination of the equilibrium sorption allows the effect of the total content of internal water and of the ion-exchange capacity on the distribution coefficients of the electrolyte to be determined.


Desalination ◽  
2020 ◽  
Vol 482 ◽  
pp. 114384
Author(s):  
Katarzyna Smolinska-Kempisty ◽  
Anna Siekierka ◽  
Marek Bryjak

Chemosphere ◽  
2021 ◽  
pp. 130817
Author(s):  
Shanxue Jiang ◽  
Haishu Sun ◽  
Huijiao Wang ◽  
Bradley P. Ladewig ◽  
Zhiliang Yao

Sign in / Sign up

Export Citation Format

Share Document