Effect of salicylic acid pretreatment on drought stress responses of zoysiagrass (Zoysia japonica)

2014 ◽  
Vol 61 (5) ◽  
pp. 619-625 ◽  
Author(s):  
Z. L. Chen ◽  
X. M. Li ◽  
L. H. Zhang
2019 ◽  
Author(s):  
Xinzhu SUN ◽  
He LIU ◽  
Songmiao HU ◽  
Yunwei ZHOU ◽  
Qingjie GUAN

Abstract Background Amorpha fruticosa (Amorpha fruticosa L.) is a deciduous shrub that is native to North America and has been introduced to China as an ornamental plant.In order to cultivate drought-tolerant Amorpha fruticosa varieties, it is important to understand the drought-tolerant mechanism of Amorpha fruticosa. Through the changes of the transcriptome of Amorpha fruticosa under drought stress, the mechanism of anti-stress of Amorpha fruticosa could be revealed. Different concentrations of polyethylene glycol-6000 (PEG-6000) was used to simulate drought stress, and transcriptomic analysis was used to reveal the changes of gene expression patterns in Amorpha fruticosa seedlings.Results Results showed that Amorpha fruticosa seedlings were seriously affected by PEG-6000. As for the differently expressed genes (DEGs), most of them were up-regulated. The additional Go and KEGG analysis results showed that DEGs were functionally enriched in cell wall, signal transduction and hormonal regulation related pathways. DEGs like AfSOD, AfHSP, AfTGA, AfbZIP and AfGRX play roles in response to drought stress.Conclusion In conclusion, Amorpha fruticosa seedlings were sensitive to drought, which was different from Amorpha fruticosa tree, and the genes functions in drought stress responses via ABA‐independent pathways. The up-regulation of Salicylic acid signal related DEGs (AfTGA and AfPR-1) indicated that Amorpha fruticosa can resist drought stress through Salicylic acid.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11044
Author(s):  
Xinzhu Sun ◽  
Songmiao Hu ◽  
Xin Wang ◽  
He Liu ◽  
Yun wei Zhou ◽  
...  

Background Amorpha fruticosa L. is a deciduous shrub that is native to North America and has been introduced to China as an ornamental plant. In order to clarify the drought resistance characteristics of Amorpha fruticosa L. and excavate the related genes involved in drought resistance regulation pathway, the mechanism of drought resistance stress of Amorpha fruticosa L. was revealed by the changes of transcriptome of Amorpha fruticosa L. under drought stress.Through the changes of the transcriptome of Amorpha fruticosa L. under drought stress, the mechanism of anti-stress of Amorpha fruticosa L. could be revealed. Methods Different concentrations of polyethylene glycol-6000 (PEG-6000) was used to simulate drought stress, and transcriptomic analysis was used to reveal the changes of gene expression patterns in Amorpha fruticosa L. seedlings. Results Results showed that Amorpha fruticosa L. seedlings were seriously affected by PEG-6000. As for the differently expressed genes (DEGs), most of them were up-regulated. The additional Go and KEGG analysis results showed that DEGs were functionally enriched in cell wall, signal transduction and hormonal regulation related pathways. DEGs like AfSOD, AfHSP, AfTGA, AfbZIP and AfGRX play roles in response to drought stress. Conclusion In conclusion, Amorpha fruticosa L. seedlings were sensitive to drought, which was different from Amorpha fruticosa L. tree, and the genes functions in drought stress responses via ABA-independent pathways. The up-regulation of Salicylic acid signal related DEGs (AfTGA and AfPR-1) indicated that Salicylic acid play a key role in response to drought stress in Amorpha fruticosa L.


2013 ◽  
Vol 5 (3) ◽  
Author(s):  
Mehran Sharafizad ◽  
Ahmad Naderi ◽  
Seyed Ata siadat ◽  
Tayeb Sakinejad ◽  
Shahram Lak

2012 ◽  
Vol 4 (10) ◽  
Author(s):  
Mehran Sharafizad ◽  
Ahmad Naderi ◽  
Seyed Ata Siadat ◽  
Tayeb Sakinejad ◽  
Shahram Lak

Plants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 512 ◽  
Author(s):  
Van Hien La ◽  
Bok-Rye Lee ◽  
Md. Tabibul Islam ◽  
Md. Al Mamun ◽  
Sang-Hyun Park ◽  
...  

Proline metabolism influences the metabolic and/or signaling pathway in regulating plant stress responses. This study aimed to characterize the physiological significance of glutamate (Glu)-mediated proline metabolism in the drought stress responses, focusing on the hormonal regulatory pathway. The responses of cytosolic Ca2+ signaling, proline metabolism, and redox components to the exogenous application of Glu in well-watered or drought-stressed plants were interpreted in relation to endogenous hormone status and their signaling genes. Drought-enhanced level of abscisic acid (ABA) was concomitant with the accumulation of ROS and proline, as well as loss of reducing potential, which was assessed by measuring NAD(P)H/NAD(P)+ and GSH/GSSG ratios. Glu application to drought-stressed plants increased both salicylic acid (SA) and cytosolic Ca2+ levels, with the highest expression of calcium-dependent protein kinase (CPK5) and salicylic acid synthesis-related ICS1. The SA-enhanced CPK5 expression was closely associated with further enhancement of proline synthesis-related genes (P5CS1, P5CS2, and P5CR) expression and a reset of reducing potential with enhanced expression of redox regulating genes (TRXh5 and GRXC9) in a SA-mediated NPR1- and/or PR1-dependent manner. These results clearly indicate that Glu-activated interplay between SA- and CPK5-signaling as well as Glu-enhanced proline synthesis are crucial in the amelioration of drought stress in Brassica napus.


Sign in / Sign up

Export Citation Format

Share Document