Genetic variability and population structure of sockeye salmon from the Asian Coast of Pacific Ocean

2017 ◽  
Vol 53 (10) ◽  
pp. 1126-1136 ◽  
Author(s):  
A. M. Khrustaleva ◽  
N. V. Klovach ◽  
J. E. Seeb
2016 ◽  
Vol 26 (1) ◽  
pp. 27-34 ◽  
Author(s):  
S. Senthilvel ◽  
Mobeen Shaik ◽  
K. Anjani ◽  
Ranjan K. Shaw ◽  
Poornima Kumari ◽  
...  

2011 ◽  
Vol 92 (4) ◽  
pp. 539-550 ◽  
Author(s):  
Yuichiro Kogura ◽  
James E. Seeb ◽  
Noriko Azuma ◽  
Hideaki Kudo ◽  
Syuiti Abe ◽  
...  

2009 ◽  
Vol 66 (1) ◽  
pp. 153-166 ◽  
Author(s):  
Kathryn Maja Cunningham ◽  
Michael Francis Canino ◽  
Ingrid Brigette Spies ◽  
Lorenz Hauser

Genetic population structure of Pacific cod, Gadus macrocephalus , was examined across much of its northeastern Pacific range by screening variation at 11 microsatellite DNA loci. Estimates of FST (0.005 ± 0.002) and RST (0.010 ± 0.003) over all samples suggested that effective dispersal is limited among populations. Genetic divergence was highly correlated with geographic distance in an isolation-by-distance (IBD) pattern along the entire coastal continuum in the northeastern Pacific Ocean (~4000 km; r2 = 0.83), extending from Washington State to the Aleutian Islands, and over smaller geographic distances for three locations in Alaska (~1700 km; r2 = 0.56). Slopes of IBD regressions suggested average dispersal distance between birth and reproduction of less than 30 km. Exceptions to this pattern were found in samples taken from fjord environments in the Georgia Basin (the Strait of Georgia (Canada) and Puget Sound (USA)), where populations were differentiated from coastal cod. Our results showed population structure at spatial scales relevant to fisheries management, both caused by limited dispersal along the coast and by sharp barriers to migration isolating smaller stocks in coastal fjord environments.


2011 ◽  
Vol 54 (1) ◽  
pp. 1-9
Author(s):  
L. Vostrý ◽  
Z. Čapková ◽  
J. Přibyl ◽  
B. Hofmanová ◽  
H. Vostrá Vydrová ◽  
...  

Abstract. In order to estimate effective population size, generation interval and the development of inbreeding coefficients (Fx) in three original breeds of cold-blooded horses kept in the Czech Republic: Silesian Noriker (SN), Noriker (N) and Czech-Moravian Belgian horse (CMB) all animals of the particular breeds born from 1990 to 2007 were analysed. The average values of generation interval between parents and their offspring were: 8.53 in SN, 8.88 in N and 8.56 in CMB. Average values of effective population size were estimated to be: 86.3 in SN, 162.3 in N and 104.4 in CMB. The average values of inbreeding coefficient were 3.13 % in SN stallions and 3.39 % in SN mares, in the N breed 1.76 % and 1.26 % and in the CMB breed 3.84 % and 3.26 % respectively. Overall averages of Fx were: 3.23 %, 1.51 % and 3.55 % for the breeds SN, N and CMB. The average value of inbreeding coefficient Fx increased by 1.22 % in SN, by 0.35 % in N and by 1.01 % in CMB, respectively. This may lead to a reduction in genetic variability. Reduction in genetic variability could be either controlled in cooperation with corresponding populations of cold-blooded breeds in other European countries or controlled by number of sires used in population


2020 ◽  
Vol 49 (6) ◽  
pp. 1083-1092
Author(s):  
S Goitom ◽  
M.G. Gicheha ◽  
F.K. Njonge ◽  
N Kiplangat

Indigenous cattle play a vital role in subsistence and livelihood of pastoral producers in Eritrea. In order to optimally utilize and conserve these valuable indigenous cattle genetic resources, the need to carry out an inventory of their genetic diversity was recognized. This study assessed the genetic variability, population structure and admixture of the indigenous cattle populations (ICPs) of Eritrea using a genotype by sequencing (GBS) approach. The authors genotyped 188 animals, which were sampled from 27 cattle populations in three diverse agro-ecological zones (western lowlands, highlands and eastern lowlands). The genome-wide analysis results from this study revealed genetic diversity, population structure and admixture among the ICPs. Averages of the minor allele frequency (AF), observed heterozygosity (HO), expected heterozygosity (HE), and inbreeding coefficient (FIS) were 0.157, 0.255, 0.218, and -0.089, respectively. Nei’s genetic distance (Ds) between populations ranged from 0.24 to 0.27. Mean population differentiation (FST) ranged from 0.01 to 0.30. Analysis of molecular variance revealed high genetic variation between the populations. Principal component analysis and the distance-based unweighted pair group method and arithmetic mean analyses revealed weak substructure among the populations, separating them into three genetic clusters. However, multi-locus clustering had the lowest cross-validation error when two genetically distinct groups were modelled. This information about genetic diversity and population structure of Eritrean ICPs provided a basis for establishing their conservation and genetic improvement programmes. Keywords: genetic variability, molecular characterization, population differentiation


2011 ◽  
Vol 68 (6) ◽  
pp. 1122-1130 ◽  
Author(s):  
James R. Irvine ◽  
Masa-aki Fukuwaka

Abstract Irvine, J. R., and Fukuwaka, M. 2011. Pacific salmon abundance trends and climate change. – ICES Journal of Marine Science, 68: 1122–1130. Understanding reasons for historical patterns in salmon abundance could help anticipate future climate-related changes. Recent salmon abundance in the northern North Pacific Ocean, as indexed by commercial catches, has been among the highest on record, with no indication of decline; the 2009 catch was the highest to date. Although the North Pacific Ocean continues to produce large quantities of Pacific salmon, temporal abundance patterns vary among species and areas. Currently, pink and chum salmon are very abundant overall and Chinook and coho salmon are less abundant than they were previously, whereas sockeye salmon abundance varies among areas. Analyses confirm climate-related shifts in abundance, associated with reported ecosystem regime shifts in approximately 1947, 1977, and 1989. We found little evidence to support a major shift after 1989. From 1990, generally favourable climate-related marine conditions in the western North Pacific Ocean, as well as expanding hatchery operations and improving hatchery technologies, are increasing abundances of chum and pink salmon. In the eastern North Pacific Ocean, climate-related changes are apparently playing a role in increasing chum and pink salmon abundances and declining numbers of coho and Chinook salmon.


Sign in / Sign up

Export Citation Format

Share Document