Preparation of materials with a developed surface by thermal treatment and chemical etching of electrodeposited icosahedral small copper particles

2015 ◽  
Vol 51 (12) ◽  
pp. 1176-1179 ◽  
Author(s):  
N. N. Gryzunova ◽  
A. G. Denisova ◽  
I. S. Yasnikov ◽  
A. A. Vikarchuk
2015 ◽  
Vol 228 ◽  
pp. 158-162
Author(s):  
Magdalena Popczyk ◽  
B. Łosiewicz ◽  
Eugeniusz Łągiewka ◽  
A. Budniok

The Ni-P and Ni-Co-P coatings were electrodeposited at the deposition current density ofjdep= -20 mA cm-2. Thermal treatment of these coatings was conducted in air at 400oC for 1 h. Scanning electron microscopy (SEM) was used for surface morphology characterization of the coatings. Phase composition was investigated by X-ray diffraction (XRD) method. Atomic absorption spectrometry (AAS) was applied to specify chemical composition of obtained coatings. It was found that introduction of Co into amorphous Ni matrix caused the surface development of the obtained deposit. The Ni-P coating revealed an amorphous structure. The Ni-Co-P coating was formed of the amorphous matrix and the amorphous alloy ingredient. Thermal treatment of the coatings allowed to obtain new multi-phase materials with slightly developed surface.


Silicon ◽  
2021 ◽  
Author(s):  
Shihao Hong ◽  
Yuxin Zou ◽  
Liang Ma ◽  
Xiuhua Chen ◽  
Shaoyuan Li ◽  
...  

2021 ◽  
Author(s):  
Shihao Hong ◽  
Liang Ma ◽  
Xiuhua Chen ◽  
Shaoyuan Li ◽  
Wenhui Ma ◽  
...  

Abstract In this work, the effects of different copper salts on the etching behavior of n-type monocrystalline silicon wafers were detailedly studied by Cu-assisted chemical etching method. Firstly, the inverted pyramid, inverted pyramid-like and oval pit texturing structures were obtained by HF/H2O2/Cu(NO3)2, HF/H2O2/CuSO4 and HF/H2O2/CuCl2 etching systems. Then, the evolution of copper particles deposition behavior was studied to reveal the influencing mechanism of different anion species, the textured wafer surfaces were characterized by scanning electron microscopy (SEM) and ultraviolet-visible (UV) spectrophotometer, the etching rate, silicon wafer thinning and the deposition amount of copper particle was systematically analyzed. We conclude that the binding force between anion and cation, the oxidation of anions and the formation of complex groups [CuCl2]− lead to great difference in the deposition behavior of copper, resulting in different etching morphology and etching rate. The moderate size copper particles deposited from HF/H2O2/Cu(NO3)2 system make that the etching process is mild and the anisotropic etching ability can fully demonstrated, and the regular inverted pyramid structures can be formed under low thinning of silicon wafers. This work will provide guidance for controllable preparation of inverted pyramid structure and future application in high efficiency solar cells.


Author(s):  
R. E. Ferrell ◽  
G. G. Paulson ◽  
C. W. Walker

Selected area electron diffraction (SAD) has been used successfully to determine crystal structures, identify traces of minerals in rocks, and characterize the phases formed during thermal treatment of micron-sized particles. There is an increased interest in the method because it has the potential capability of identifying micron-sized pollutants in air and water samples. This paper is a short review of the theory behind SAD and a discussion of the sample preparation employed for the analysis of multiple component environmental samples.


Author(s):  
X. Qiu ◽  
A. K. Datye ◽  
T. T. Borek ◽  
R. T. Paine

Boron nitride derived from polymer precursors is of great interest for applications such as fibers, coatings and novel forms such as aerogels. The BN is prepared by the polymerization of functionalized borazine and thermal treatment in nitrogen at 1200°C. The BN powders obtained by this route are invariably trubostratic wherein the sheets of hexagonal BN are randomly oriented to yield the so-called turbostratic modification. Fib 1a and 1b show images of BN powder with the corresponding diffraction pattern in fig. 1c. The (0002) reflection from BN is seen as a diffuse ring with occational spots that come from crystals of BN such as those shown in fig. 1b. The (0002) lattice fringes of BN seen in these powders are the most characteristic indication of the crystallinity of the BN.


Author(s):  
M.E. Lee

The crystalline perfection of bulk CdTe substrates plays an important role in their use in infrared device technology. The application of chemical etchants to determine crystal polarity or the density and distribution of crystallographic defects in (100) CdTe is not well understood. The lack of data on (100) CdTe surfaces is a result of the apparent difficulty in growing (100) CdTe single crystal substrates which is caused by a high incidence of twinning. Many etchants have been reported to predict polarity on one or both (111) CdTe planes but are considered to be unsuitable as defect etchants. An etchant reported recently has been considered to be a true defect etchant for CdTe, MCT and CdZnTe substrates. This etchant has been reported to reveal crystalline defects such as dislocations, grain boundaries and inclusions in (110) and (111) CdTe. In this study the effect of this new etchant on (100) CdTe surfaces is investigated.The single crystals used in this study were (100) CdTe as-cut slices (1mm thickness) from Bridgman-grown ingots.


Sign in / Sign up

Export Citation Format

Share Document