Investigations of the inductively coupled argon plasma sputtering of Pb1 − x Sn x Te ternary solid solution

Author(s):  
I. I. Amirov ◽  
S. P. Zimin ◽  
E. S. Gorlachev ◽  
V. V. Naumov ◽  
E. Abramof ◽  
...  
1993 ◽  
Vol 58 (8) ◽  
pp. 1821-1831 ◽  
Author(s):  
Jaroslav Jambor ◽  
Tomáš Javorek

The macrophorous hydrophobic sorbent Amberlite XAD-2 proved to be well suited to the preconcentration of minority amounts of Al, Au, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sn, Ti and V in the form of their chelates with organic reagents. From among 14 reagents tested, 8-hydroxyquinoline and diethyldithiocarbamate appeared most suitable for the quantitative sorption up to level of 1 μg l-1 of analyte. Emission spectrometry served as the analytical finish; the nitrous oxide-acetylene flame, electric arc and inductively coupled argon plasma were chosen according to the nature of the element. The procedure is convenient for the determination of the minority analytes in waters


2021 ◽  
Vol 32 (5) ◽  
pp. 6607-6622
Author(s):  
Lagen Kumar Pradhan ◽  
Suman Kumari ◽  
Murli Kumar Manglam ◽  
Rabichandra Pandey ◽  
Manoranjan Kar

2021 ◽  
Vol 127 ◽  
pp. 105674
Author(s):  
Shrabani Ghosh ◽  
Supratim Maity ◽  
Ankita Chandra ◽  
Bikram Kumar Das ◽  
Nripen Besra ◽  
...  

Author(s):  
Christopher H. Ingles ◽  
John A. Mavrogenes

ABSTRACT Laser ablation-inductively coupled plasma-mass spectrometry was used to traverse hydrothermal vein sphalerite from different ore-forming stages of the Porgera Au-Ag mine, Papua New Guinea. Elements were measured in situ over the growth of crystals to investigate the greatly varying concentrations of cations in sphalerite and their positions in the lattice. Traverse profiles for 16 elements were obtained and aligned to transmitted light images where possible. Each sample contained an array of elements, with many displaying orders of magnitude concentration differences. Results show the simultaneous incorporation of Cu and Sn in sphalerite, as well as Cu and Ag, In and Sn, As and Sb, Fe and Mn, and Cu and Ga. The relation [4Zn2+ ↔ 2Cu+ + Sn2+ + Sn4+] is proposed to explain the 1:1 Cu–Sn correlation. Further relations can be seen, including a Ga “ceiling” or Cu “floor”, where Ga incorporation becomes dependent on Cu concentrations. Furthermore, silver was also observed to correlate with Au, Mn, Ni, Pb, and Bi. Meta-stable solid solutions between pairs such as Cu, Ag; Fe, Mn; As, Sb; and In, Sn are also suggested. Each of these pairs are neighbors on the periodic table of elements, which suggests that simple solid solution can occur, and positive correlations for all four solid solutions were found in one sample alone. While the concept of charge-specific solid solutions in sphalerite has been discussed in the literature with reference to monovalent cations, the results presented herein also indicate solid solutions of higher oxidation states, containing many cations. Furthermore, while cations in charge-specific solid solutions have been proposed to compete for lattice sites in sphalerite, simultaneous in situ coupled concentrations at Porgera suggest otherwise. Cationic substitution equations displaying decimal ratios of each element in solid solution can then provide a novel method to distinguish between solid solution concentrations in different samples. For example, displaying 1:1 ratios of Cu–Ag and Sb–As: [2Zn2+ ↔ (Cu+0.5, Ag+0.5) + (As3+0.5, Sb3+0.5)], or for a 100:1 Fe–Mn ratio: [Zn2+ ↔ (Fe2+0.99, Mn2+0.01)].


Sign in / Sign up

Export Citation Format

Share Document