A Method of Pulsed Magnetic Testing for Discontinuities in Objects Made of Diamagnetic and Paramagnetic Metals Using a Magnetic Carrier

2018 ◽  
Vol 54 (12) ◽  
pp. 877-886
Author(s):  
V. V. Pavlyuchenko ◽  
E. S. Doroshevich
2020 ◽  
pp. 38-45
Author(s):  
В.В. Павлюченко ◽  
Е.С. Дорошевич

Based on the developed methods of hysteresis interference, the calculated dependences U(x) of the electric voltage taken from the magnetic field transducer on the x coordinate were obtained. A magnetic carrier with an arctangent characteristic was exposed to a series of bipolar pulses of the magnetic field of a linear inductor of one, two, three, four, five and fifteen pulses. An algorithm is presented for the sequence of changes in the magnitude of the total strength of the magnetic field pulses on the surface of an aluminum plate, which provides the same amplitude of hysteresis oscillations of the electric voltage and makes it possible to obtain a linear difference dependence U(x) for wedge-shaped and flat aluminum samples. The results obtained make it possible to increase the accuracy and efficiency of control of the thickness of the object and its thickness variation in the given directions, as well as the defects of the object.


1994 ◽  
Vol 59 (1-3) ◽  
pp. 271-273 ◽  
Author(s):  
J. Ginsztler ◽  
I. Mészáros ◽  
B. Hidasi ◽  
L. Dévényi

2014 ◽  
Vol 936 ◽  
pp. 674-680
Author(s):  
Na Zhang ◽  
Rui Xiang Yan ◽  
Wen Qiang Guan

To isolate recombinant chitinase quickly and boost its anti-fungi activities in vitro, functional magnetic nanometer carrier was used to immobilize recombinant chitinase from the crude enzyme solution and immobilized recombinant chitinase was applied to test whether it would inhibit the growth of gray mold from fruits. In this study, the carboxyl magnetic carrier was produced by solvent thermal reduction method and characterized by scanning electron microscope (SEM) and fourier transform infrared spectrometer (FTIR). Then, the carboxyl magnetic carrier activated by EDC/NHS was applied to immobilize recombinant chitinase and the immobilization efficiency was investigated by quantitative analysis. To obtain the highest immobilization efficiency, reaction conditions were optimized through combining different pH, temperature and reaction period. The results show that the surface of magnetic carrier was successfully carboxyl and the average diameter was 200nm. The immobilization efdiciency could reach the peak 64.43% after 7h reaction at the condition of pH 6 and 25°C. It also shows that immobilized recombinant chitinase can significantly inhibit the growth of gray mold isolated from table grape compared with the enzyme without immobilization with magnetic nanometer carrier.


2021 ◽  
Vol 7 (7) ◽  
pp. 93
Author(s):  
Samia Benmansour ◽  
Carlos J. Gómez-García

Here, we review the different series of (super)conducting and magnetic radical salts prepared with organic donors of the tetrathiafulvalene (TTF) family and oxalato-based metal complexes (ox = oxalate = C2O42−). Although most of these radical salts have been prepared with the donor bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF = ET), we also include all the salts prepared with other TTF-type donors such as tetrathiafulvalene (TTF), tetramethyl-tetrathiafulvalene (TM-TTF), bis(ethylenediseleno)tetrathiafulvalene (BEST), bis(ethylenedithio)tetraselenafulvalene (BETS) and 4,5bis((2S)-2-hydroxypropylthio)-4’,5’-(ethylenedithio)tetrathiafulvalene (DMPET). Most of the oxalate-based complexes are monomers of the type [MIII(C2O4)3]3−, [Ge(C2O4)3]2− or [Cu(C2O4)2]2−, but we also include the reported salts with [Fe2(C2O4)5]4− dimers, [MII(H2O)2[MIII(C2O4)3]2]4− trimers and homo- or heterometallic extended 2D layers such as [MIIMIII(C2O4)3]− and [MII2(C2O4)3]2−. We will present the different structural families and their magnetic properties (such as diamagnetism, paramagnetism, antiferromagnetism, ferromagnetism and even long-range magnetic ordering) that coexist with interesting electrical properties (such as semiconductivity, metallic conductivity and even superconductivity). We will focus on the electrical and magnetic properties of the so-called Day series formulated as β”-(BEDT-TTF)4[A+MIII(C2O4)3]·G, which represents the largest family of paramagnetic metals and superconductors reported to date, with more than fifty reported examples.


2021 ◽  
Author(s):  
Sandra B. Ramírez-García ◽  
Luis M. Alva-Valdivia

<p>Magnetite formation of serpentinized ultramafic rocks leads to variations in the magnetic properties of serpentinites; however, magnetite precipitation is still on debate.</p><p>In this work, we analyzed 60 cores of ultramafic rocks with a variety of serpentinization degrees. These rocks belong to the ultramafic-mafic San Juan de Otates complex in Guanajuato, Mexico. Geochemical studies have been previously conducted, enabling us to compare changes in the magnetic properties against the chemical variations generated by the serpentinization process. By studying the density and magnetic properties such as anisotropy of magnetic susceptibility, hysteresis curves as well as magnetic and temperature-dependent susceptibility and, we were able to identify the relationship between magnetic content and serpentinization degree, the predominant magnetic carrier, and to what extent the magnetite grain size depends on the serpentinization.  Variations in these parameters allowed us to better constrain the temperature at which serpentinization occurred, the generation of other Fe-rich phases such as Fe-brucite and/or Fe-rich serpentine as well as distinctive rock textures formed at different serpentinization degrees.</p>


1994 ◽  
Vol 7 (8) ◽  
pp. 1039-1056 ◽  
Author(s):  
G. Moffat ◽  
R.A. Williams ◽  
C. Webb ◽  
R. Stirling

Sign in / Sign up

Export Citation Format

Share Document