Influence of AlCl3 on aggregation stability of aqueous dispersions of kraft lignin according to filtration through track membranes

2011 ◽  
Vol 73 (6) ◽  
pp. 822-824
Author(s):  
Yu. L. Moreva ◽  
Yu. M. Chernoberezhskii
2017 ◽  
Vol 79 (1) ◽  
pp. 126-132 ◽  
Author(s):  
O. A. Soboleva ◽  
G. A. Khamenov ◽  
V. Yu. Dolmatov ◽  
V. G. Sergeyev

2016 ◽  
Vol 18 (5) ◽  
pp. 1416-1422 ◽  
Author(s):  
Miikka Lievonen ◽  
Juan José Valle-Delgado ◽  
Maija-Liisa Mattinen ◽  
Eva-Lena Hult ◽  
Kalle Lintinen ◽  
...  

A simple method to produce stable aqueous dispersions of spherical anionic or cationic lignin nanoparticles from softwood kraft lignin was developed.


Author(s):  
Vitthal S. Kulkarni ◽  
Wayne H. Anderson ◽  
Rhoderick E. Brown

The biological significance of the sphingomyelins (SM) and monoglycosylated sphingolipids like galactosylceramides (GalCer) are well documented Our recent investigation showed tubular bilayers in the aqueous dispersions of N-nervonoyl GalCer [N-(24:lΔ15,cls) GalCer] (a major fatty acyl moiety of natural GalCer). To determine the influence of lipid head groups on the resulting mesophasic morphology, we investigated microstructural self-assemblies of N-nervonoyl-SM [N-(24:1 Δ15,cls) SM; the second most abundant sphingomyelin in mammalian cell membranes], 1- palmitoyl-2-nervonoyl phosphatidylcholine [PNPC] (the lipid species with the same acyl chain configuration as in N-(24: 1) GalCer) and also compared it with egg-SM by freeze-fracture EM.Procedures for synthesizing and purifying N-(24:1) GalCer, N-(24:1) SM, and PNPC have been reported . Egg-SM was purchased from Avanti Polar Lipids, Alabaster AL. All lipids were >99% pure as checked by thin layer chromatography. Lipid dispersions were prepared by hydrating dry lipid with phosphate buffer (pH 6.6) at 80-90°C (3-5 min), vigorously vortexing (1 min) and repeating this procedure for three times prior to three freeze-thaw cycles.


TAPPI Journal ◽  
2013 ◽  
Vol 12 (11) ◽  
pp. 49-53 ◽  
Author(s):  
CHRISTINE CHIRAT ◽  
LUCIE BOIRON ◽  
DOMINIQUE LACHENAL

Autohydrolysis and acid hydrolysis treatments were applied on mixed softwood chips. The cooking ability was studied by varying the alkali and duration of the cook. Pulps with kappa numbers varying from 30 to 70 were obtained. The bleaching ability of these pulps was studied and compared to control kraft pulps. The prehydrolyzed pulps were shown to be more efficiently delignified by oxygen than the control kraft pulps starting from the same kappa number. Furthermore, the final bleaching was also easier for these pulps. It was also shown that extensive oxygen delignification applied on high-kappa pre-hydrolyzed pulps could be a way to improve the overall yield, which is a prerequisite for the development of such biorefinery concepts. Lignin was isolated from the control kraft and the two pre-hydrolyzed kraft pulps and analyzed by 13C NMR. Lignins from pre-hydrolyzed kraft pulps had similar free phenolic groups content to the control kraft lignin, but their aliphatic hydroxyl groups and β-O-4 content were lower than for the control lignin. The quaternary carbon content was the same for all the samples.


TAPPI Journal ◽  
2010 ◽  
Vol 9 (6) ◽  
pp. 24-30 ◽  
Author(s):  
NIKLAS BERGLIN ◽  
PER TOMANI ◽  
HASSAN SALMAN ◽  
SOLVIE HERSTAD SVÄRD ◽  
LARS-ERIK ÅMAND

Processes have been developed to produce a solid biofuel with high energy density and low ash content from kraft lignin precipitated from black liquor. Pilot-scale tests of the lignin biofuel were carried out with a 150 kW powder burner and a 12 MW circulating fluidized bed (CFB) boiler. Lignin powder could be fired in a powder burner with good combustion performance after some trimming of the air flows to reduce swirl. Lignin dried to 10% moisture content was easy to feed smoothly and had less bridging tendencies in the feeding system than did wood/bark powder. In the CFB boiler, lignin was easily handled and cofired together with bark. Although the filter cake was broken into smaller pieces and fines, the combustion was not disturbed. When cofiring lignin with bark, the sulfur emission increased compared with bark firing only, but most of the sulfur was captured by calcium in the bark ash. Conventional sulfur capture also occurred with addition of limestone to the bed. The sulfur content in the lignin had a significantly positive effect on reducing the alkali chloride content in the deposits, thus reducing the high temperature corrosion risk.


2020 ◽  
Author(s):  
Daniel Bůžek ◽  
Slavomír Adamec ◽  
Kamil Lang ◽  
Jan Demel

<div><p>UiO-66 is a zirconium-based metal-organic framework (MOF) that has numerous applications. Our group recently determined that UiO-66 is not as inert in aqueous dispersions as previously reported in the literature. The present work therefore assessed the behaviour of UiO-66 in buffers: 2-amino-2-(hydroxymethyl)-1,3-propanediol (TRIS), 4-(2-hydroxyethyl)piperazine-1-ethane sulfonic acid (HEPES), N-ethylmorpholine (NEM) and phosphate buffer (PB), all of which are commonly used in many UiO-66 applications. High pressure liquid chromatography and inductively coupled plasma mass spectrometry were used to monitor degradation of the MOF. In each buffer, the terephthalate linker was released to some extent, with a more pronounced leaching effect in the saline forms of these buffers. The HEPES buffer was found to be the most benign, whereas NEM and PB should be avoided at any concentration as they were shown to rapidly degrade the UiO-66 framework. Low concentration TRIS buffers are also recommended, although these offer minimal buffer capacity to adjust pH. Regardless of the buffer used, rapid terephthalate release was observed, indicating that the UiO-66 was attacked immediately after mixing with the buffer. In addition, the dissolution of zirconium, observed in some cases, intensified the UiO-66 decomposition process. These results demonstrate that sensitive analytical techniques have to be used to monitor the release of MOF components so as to quantify the stabilities of these materials in liquid environments.</p></div>


Sign in / Sign up

Export Citation Format

Share Document