Sub-Doppler Spectroscopy of Room-Temperature Cs Atomic Vapor in a 400-nm-Thick Nanocell

2021 ◽  
Vol 133 (4) ◽  
pp. 404-410
Author(s):  
A. Sargsyan ◽  
R. Momier ◽  
A. Papoyan ◽  
D. Sarkisyan
2015 ◽  
Vol 594 ◽  
pp. 012046
Author(s):  
L Deng ◽  
E W Hagley ◽  
Runbing Li ◽  
Chengjie Zhu

2014 ◽  
Vol 105 (16) ◽  
pp. 161103 ◽  
Author(s):  
Runbing Li ◽  
Chengjie Zhu ◽  
L. Deng ◽  
E. W. Hagley

2020 ◽  
Vol 10 (22) ◽  
pp. 8178
Author(s):  
Zerong Wang ◽  
Xiaokai Hou ◽  
Jiandong Bai ◽  
Junmin Wang

The measurement of the cesium (Cs) 5p67d2D5/2 excited state’s hyperfine splitting intervals and hyperfine interaction constants was experimentally investigated using a ladder-type (852 nm + 698 nm) three-level Cs system (5p66s2S1/2–5p66p2P3/2–5p67d2D5/2) with a room-temperature Cs atomic vapor cell. By scanning the 698 nm coupling laser’s frequency, the Doppler-free high-resolution electromagnetically-induced transparency (EIT)-assisted double-resonance optical pumping (DROP) spectra were demonstrated via transmission enhancement of the locked 852 nm probe laser. The EIT-assisted DROP spectra were employed to study the hyperfine splitting intervals for the Cs 5p67d2D5/2 excited state with a room-temperature Cs atomic vapor cell, and the radio-frequency modulation sideband of a waveguide-type electro-optic phase modulator (EOPM) was introduced for frequency calibration to improve the accuracy of frequency interval measurement. The existence of EIT makes the DROP spectral linewidth much narrower, and it is very helpful to significantly improve the spectroscopic resolution. Benefiting from the higher signal-to-noise ratio (SNR) and much better resolution of the EIT-assisted DROP spectra, the hyperfine splitting intervals between the hyperfine folds of (F” = 6), (F” = 5), and (F” = 4) of the Cs 5p67d2D5/2 state (HFS6″–5″ = −10.60(17) MHz and HFS5″–4″ = −8.54(15) MHz) were measured and, therefore, the magnetic dipole hyperfine interaction constant (A = −1.70(03) MHz) and the electrical quadrupole hyperfine interaction constant (B = −0.77(58) MHz) were derived for the Cs 5p67d2D5/2 state. These constants constitute an important reference value for an improvement of the precise measurement and determination of basic physical constants.


Author(s):  
J. E. Doherty ◽  
A. F. Giamei ◽  
B. H. Kear ◽  
C. W. Steinke

Recently we have been investigating a class of nickel-base superalloys which possess substantial room temperature ductility. This improvement in ductility is directly related to improvements in grain boundary strength due to increased boundary cohesion through control of detrimental impurities and improved boundary shear strength by controlled grain boundary micros true tures.For these investigations an experimental nickel-base superalloy was doped with different levels of sulphur impurity. The micros tructure after a heat treatment of 1360°C for 2 hr, 1200°C for 16 hr consists of coherent precipitates of γ’ Ni3(Al,X) in a nickel solid solution matrix.


Author(s):  
J. N. Turner ◽  
D. N. Collins

A fire involving an electric service transformer and its cooling fluid, a mixture of PCBs and chlorinated benzenes, contaminated an office building with a fine soot. Chemical analysis showed PCDDs and PCDFs including the highly toxic tetra isomers. Guinea pigs were chosen as an experimental animal to test the soot's toxicity because of their sensitivity to these compounds, and the liver was examined because it is a target organ. The soot was suspended in 0.75% methyl cellulose and administered in a single dose by gavage at levels of 1,10,100, and 500mgm soot/kgm body weight. Each dose group was composed of 6 males and 6 females. Control groups included 12 (6 male, 6 female) animals fed activated carbon in methyl cellulose, 6 males fed methyl cellulose, and 16 males and 10 females untreated. The guinea pigs were sacrificed at 42 days by suffocation in CO2. Liver samples were immediately immersed and minced in 2% gluteraldehyde in cacadylate buffer at pH 7.4 and 4°C. After overnight fixation, samples were postfixed in 1% OsO4 in cacodylate for 1 hr at room temperature, embedded in epon, sectioned and stained with uranyl acetate and lead citrate.


Author(s):  
Joseph J. Comer

Domains visible by transmission electron microscopy, believed to be Dauphiné inversion twins, were found in some specimens of synthetic quartz heated to 680°C and cooled to room temperature. With the electron beam close to parallel to the [0001] direction the domain boundaries appeared as straight lines normal to <100> and <410> or <510> directions. In the selected area diffraction mode, a shift of the Kikuchi lines was observed when the electron beam was made to traverse the specimen across a boundary. This shift indicates a change in orientation which accounts for the visibility of the domain by diffraction contrast when the specimen is tilted. Upon exposure to a 100 KV electron beam with a flux of 5x 1018 electrons/cm2sec the boundaries are rapidly decorated by radiation damage centers appearing as black spots. Similar crystallographio boundaries were sometimes found in unannealed (0001) quartz damaged by electrons.


Author(s):  
Louis T. Germinario

A liquid nitrogen stage has been developed for the JEOL JEM-100B electron microscope equipped with a scanning attachment. The design is a modification of the standard JEM-100B SEM specimen holder with specimen cooling to any temperatures In the range ~ 55°K to room temperature. Since the specimen plane is maintained at the ‘high resolution’ focal position of the objective lens and ‘bumping’ and thermal drift la minimized by supercooling the liquid nitrogen, the high resolution capability of the microscope is maintained (Fig.4).


Sign in / Sign up

Export Citation Format

Share Document