Effect of thermal annealing on the photoluminescence of structures with InGaAs/GaAs quantum wells and a low-temperature GaAs layer δ-doped with Mn

2016 ◽  
Vol 50 (11) ◽  
pp. 1469-1474
Author(s):  
I. L. Kalentyeva ◽  
O. V. Vikhrova ◽  
Yu. A. Danilov ◽  
B. N. Zvonkov ◽  
A. V. Kudrin ◽  
...  
1991 ◽  
Vol 241 ◽  
Author(s):  
L.-W. Yin ◽  
J. Ibbetson ◽  
M. M. Hashemi ◽  
W. Jiang ◽  
S.-Y. Hu ◽  
...  

ABSTRACTDC characteristics of a GaAs MISFET structure using low-temperature GaAs (LTGaAs) as the gate insulator were investigated. MISFETs with different gate to channel separation (d) were fabricated. The dependence of four important device parameters such as gate-drain breakdown voltage (VBR), channel current at zero gate bias (Idss), transconductance (gm), and gate-drain turn-on voltage (Von) on the gate insulator thickness were analyzed. It was observed that (a) in terms of Idss and gin, the LT-GaAs gate insulator behaves like an undoped regular GaAs layer and (b) in terms of VBR and Von, the LT-GaAs gate insulator behaves as a trap dominated layer.


1991 ◽  
Vol 241 ◽  
Author(s):  
Y. Hwang ◽  
D. Zhang ◽  
T. Zhang ◽  
M. Mytych ◽  
R. M. Kolbas

ABSTRACTIn this work we demonstrate that photopumped quantum wellheterostructure lasers with excellent optical quality can be grown ontop of a LT GaAs buffer layer by molecular beam epitaxy. Hightemperature thermal annealing of these lasers blue-shifts the laseremission wavelengths but the presence/absence of a LT GaAs layerhad little effect on the overall laser thresholds. Also, to first order itwas not necessary to include an AlAs barrier layer to preventadverse effects (as has been necessary in the gate stack of MESFETs to prevent carrier compensation).


2000 ◽  
Vol 623 ◽  
Author(s):  
J. C. Ferrer ◽  
Z. Liliental-Weber ◽  
H. Reese ◽  
Y.J. Chiu ◽  
E. Hu

AbstractThe lateral thermal oxidation process of Al0.98Ga0.02As layers has been studied by transmission electron microscopy. Growing a low-temperature GaAs layer below the Al0.98Ga0.02As has been shown to result in better quality of the oxide/GaAs interfaces compared to reference samples. While the later have As precipitation above and below the oxide layer and roughness and voids at the oxide/GaAs interface, the structures with low-temperature have less As precipitation and develop interfaces without voids. These results are explained in terms of the diffusion of the As toward the low temperature layer. The effect of the addition of a Si02 cap layer is also discussed.


1995 ◽  
Vol 66 (16) ◽  
pp. 2086-2088 ◽  
Author(s):  
Zuzanna Liliental‐Weber ◽  
X. W. Lin ◽  
J. Washburn ◽  
W. Schaff

1995 ◽  
Vol 378 ◽  
Author(s):  
Tsai-Cheng Lin ◽  
Hiromasa T Kaibe ◽  
Tsugunori Okumura

AbstractDeep levels in the annealed low-temperature molecular beam epitaxial (LT-MBE) GaAs layer were successfully characterized by using the capacitance deep-level transient spectroscopy (C-DLTS) as well as photocapacitance quenching technique in combination with a unique sample structure. In this work, we have fabricated the samples by inserting the LT-GaAs layer into two n-type semi-conductive layers, like a sandwich (n-LT-n structure), grown at normal substrate temperatures. DLTS measurements have revealed that one electron trap dominates the annealed LT-MBE GaAs. The dominant electron trap was very similar to the so-called EL3 level. Moreover, we found the midgap level appeared upon 800-900°C RTA, although no midgap level was detected in the as-grown n-LT-n sample (annealed at 620°C) and confirmed with photoquenching measurements that it is the EL2 level.


Sign in / Sign up

Export Citation Format

Share Document