On the boundary value problem for a class of operator-differential equations of odd order with variable coefficients

2008 ◽  
Vol 78 (1) ◽  
pp. 497-499 ◽  
Author(s):  
A. R. Aliev
2019 ◽  
Vol 14 (3) ◽  
pp. 184-201
Author(s):  
A.M. Akhtyamov

It is shown that for the asymmetric diffusion operator the case when the characteristic determinant is identically equal to zero is impossible and the only possible degenerate boundary conditions are the Cauchy conditions. In the case of a symmetric diffusion operator, the characteristic determinant is identically equal to zero if and only if the boundary conditions are false–periodic boundary conditions and is identically equal to a constant other than zero if and only if its boundary conditions are generalized Cauchy conditions. All degenerate boundary conditions for a spectral problem with a third–order differential equation y'''(x) = λy(x) are described. The general form of degenerate boundary conditions for the fourth–order differentiation operator D4 is found. 12 classes of boundary value eigenvalue problems are described for the operator D4, the spectrum of which fills the entire complex plane. It is known that spectral problems whose spectrum fills the entire complex plane exist for differential equations of any even order. John Locker posed the following problem (eleventh problem): are there similar problems for odd–order differential equations? A positive answer is given to this question. It is proved that spectral problems, the spectrum of which fills the entire complex plane, exist for differential equations of any odd order. Thus, the problem of John Locker is resolved. John Locker posed a problem (tenth problem): can a spectral boundary–value problem have a finite spectrum? Boundary value problems with a polynomial occurrence of a spectral parameter in a differential equation are considered. It is shown that the corresponding boundary–value problem can have a predetermined finite spectrum in the case when the roots of the characteristic equation are multiple. If the roots of the characteristic equation are not multiple, then there can be no finite spectrum. Thus, John Locker’s tenth problem is resolved.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Amar Benkerrouche ◽  
Mohammed Said Souid ◽  
Kanokwan Sitthithakerngkiet ◽  
Ali Hakem

AbstractIn this manuscript, we examine both the existence and the stability of solutions to the implicit boundary value problem of Caputo fractional differential equations of variable order. We construct an example to illustrate the validity of the observed results.


SeMA Journal ◽  
2021 ◽  
Author(s):  
Rosana Rodríguez-López ◽  
Rakesh Tiwari

AbstractThe aim of this paper is to introduce a new class of mixed contractions which allow to revise and generalize some results obtained in [6] by R. Gubran, W. M. Alfaqih and M. Imdad. We also provide an example corresponding to this class of mappings and show how the new fixed point result relates to the above-mentioned result in [6]. Further, we present an application to the solvability of a two-point boundary value problem for second order differential equations.


2021 ◽  
Vol 18 (5) ◽  
Author(s):  
Francesco Aldo Costabile ◽  
Maria Italia Gualtieri ◽  
Anna Napoli

AbstractGeneral nonlinear high odd-order differential equations with Lidstone–Euler boundary conditions of second type are treated both theoretically and computationally. First, the associated interpolation problem is considered. Then, a theorem of existence and uniqueness of the solution to the Lidstone–Euler second-type boundary value problem is given. Finally, for a numerical solution, two different approaches are illustrated and some numerical examples are included to demonstrate the validity and applicability of the proposed algorithms.


Sign in / Sign up

Export Citation Format

Share Document