scholarly journals Survey of studies on degenerate boundary conditions and finite spectrum

2019 ◽  
Vol 14 (3) ◽  
pp. 184-201
Author(s):  
A.M. Akhtyamov

It is shown that for the asymmetric diffusion operator the case when the characteristic determinant is identically equal to zero is impossible and the only possible degenerate boundary conditions are the Cauchy conditions. In the case of a symmetric diffusion operator, the characteristic determinant is identically equal to zero if and only if the boundary conditions are false–periodic boundary conditions and is identically equal to a constant other than zero if and only if its boundary conditions are generalized Cauchy conditions. All degenerate boundary conditions for a spectral problem with a third–order differential equation y'''(x) = λy(x) are described. The general form of degenerate boundary conditions for the fourth–order differentiation operator D4 is found. 12 classes of boundary value eigenvalue problems are described for the operator D4, the spectrum of which fills the entire complex plane. It is known that spectral problems whose spectrum fills the entire complex plane exist for differential equations of any even order. John Locker posed the following problem (eleventh problem): are there similar problems for odd–order differential equations? A positive answer is given to this question. It is proved that spectral problems, the spectrum of which fills the entire complex plane, exist for differential equations of any odd order. Thus, the problem of John Locker is resolved. John Locker posed a problem (tenth problem): can a spectral boundary–value problem have a finite spectrum? Boundary value problems with a polynomial occurrence of a spectral parameter in a differential equation are considered. It is shown that the corresponding boundary–value problem can have a predetermined finite spectrum in the case when the roots of the characteristic equation are multiple. If the roots of the characteristic equation are not multiple, then there can be no finite spectrum. Thus, John Locker’s tenth problem is resolved.

Author(s):  
Xiaojuan Chen ◽  
Xiaoxiao Ma

In the process of traditional methods, the error rate of external boundary value problem is always at a high level, which seriously affects the subsequent calculation and cannot meet the requirements of current Volterra products. To solve this problem, Volterra's preprocessing method for the external boundary value problem of Integro differential equations is studied in this paper. The Sinc function is used to deal with the external value problem of Volterra Integro differential equation, which reduces the error of the external value problem and reduces the error of the external value problem. In order to prove the existence of the solution of the differential equation, when the existence of the solution can be proved, the differential equation is transformed into a Volterra integral equation, the Taylor expansion equation is used, the symplectic function is used to deal with the external value problem of homogeneous boundary conditions, and the uniform effective numerical solution of the external value problem of the equation is obtained by homogeneous transformation according to the non-homogeneous boundary conditions.


2021 ◽  
Vol 18 (5) ◽  
Author(s):  
Francesco Aldo Costabile ◽  
Maria Italia Gualtieri ◽  
Anna Napoli

AbstractGeneral nonlinear high odd-order differential equations with Lidstone–Euler boundary conditions of second type are treated both theoretically and computationally. First, the associated interpolation problem is considered. Then, a theorem of existence and uniqueness of the solution to the Lidstone–Euler second-type boundary value problem is given. Finally, for a numerical solution, two different approaches are illustrated and some numerical examples are included to demonstrate the validity and applicability of the proposed algorithms.


Author(s):  
Eduard I. Starovoitov ◽  
◽  
Denis V. Leonenko ◽  

Axisymmetric deformation of a three-layer circular plate under repeated alternating loading from the plastic region by a local load is considered. To describe kinematics of asymmetrical on the thickness of the plate pack is adopted the hypothesis of a broken line. In a thin elastic-plastic load-bearing layers are used the hypothesis of Kirchhoff. A non-linearly elastic relatively thick filler is incompressible in thickness. It is taken to be a hypothesis of Tymoshenko regarding the straightness and the incompressibility of the deformed normals with linear approximation of the displacements through the thickness layer. The work of the filler in the tangential direction is taken into account. The physical relations of stress-strain relations correspond to the theory of small elastic-plastic deformations. The effect of heat flow is taken into account. The temperature field in the plate was calculated by the formula obtained by averaging the thermophysical parameters over the thickness of the package. The system of differential equations of equilibrium under loading of the plate from the natural state is obtained by the Lagrange variational method. Boundary conditions on the plate contour are formulated. The solution of the corresponding boundary value problem is reduced to finding the three desired functions: deflection, shear and radial displacement of the shear surface of the filler. A non-uniform system of ordinary nonlinear differential equations is written for these functions. Its analytical iterative solution is obtained in Bessel functions by the method of elastic solutions of Ilyushin. In case of repeated alternating loading of the plate, the solution of the boundary value problem is constructed using the theory of variable loading of Moskvitin. In this case, the hypothesis of similarity of plasticity functions at each loading step is used. Their analytical form is taken independent of the point of unloading. However, the material constants included in the approximation formulas will be different. The cyclic hardening of the material of the bearing layers is taken into account. The parametric analysis of the obtained solutions under different boundary conditions in the case of a local load distributed in a circle is carried out. The influence of temperature and nonlinearity of layer materials on the displacements in the plate is numerically investigated.


Mathematics ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1899
Author(s):  
Ahmed Alsaedi ◽  
Amjad F. Albideewi ◽  
Sotiris K. Ntouyas ◽  
Bashir Ahmad

In this paper, we derive existence and uniqueness results for a nonlinear Caputo–Riemann–Liouville type fractional integro-differential boundary value problem with multi-point sub-strip boundary conditions, via Banach and Krasnosel’skii⏝’s fixed point theorems. Examples are included for the illustration of the obtained results.


1949 ◽  
Vol 1 (4) ◽  
pp. 379-396 ◽  
Author(s):  
G. F. D. Duff

The eigenfunctions of a boundary value problem are characterized by two quite distinct properties. They are solutions of ordinary differential equations, and they satisfy prescribed boundary conditions. It is a definite advantage to combine these two requirements into a single problem expressed by a unified formula. The use of integral equations is an example in point. The subject of this paper, namely the Schrödinger-Infeld Factorization Method, which is applicable to certain restricted. Sturm-Liouville problems, is based upon another combination of the two properties. The Factorization Method prescribes a manufacturing process.


1962 ◽  
Vol 2 (4) ◽  
pp. 425-439 ◽  
Author(s):  
A. Erdéyi

In this paper we shall discuss the boundary value problem consisting of the nonlinear ordinary differential equation of the second order, and the boundary conditions.


2021 ◽  
Vol 26 (1) ◽  
pp. 34-54
Author(s):  
Elmira A. Bakirova ◽  
Anar T. Assanova ◽  
Zhazira M. Kadirbayeva

The article proposes a numerically approximate method for solving a boundary value problem for an integro-differential equation with a parameter and considers its convergence, stability, and accuracy. The integro-differential equation with a parameter is approximated by a loaded differential equation with a parameter. A new general solution to the loaded differential equation with a parameter is introduced and its properties are described. The solvability of the boundary value problem for the loaded differential equation with a parameter is reduced to the solvability of a system of linear algebraic equations with respect to arbitrary vectors of the introduced general solution. The coefficients and the right-hand sides of the system are compiled through solutions of the Cauchy problems for ordinary differential equations. Algorithms are proposed for solving the boundary value problem for the loaded differential equation with a parameter. The relationship between the qualitative properties of the initial and approximate problems is established, and estimates of the differences between their solutions are given.


Author(s):  
Anar Adiloğlu-Nabiev

A boundary value problem for the second order differential equation -y′′+∑_{m=0}N−1λ^{m}q_{m}(x)y=λ2Ny with two boundary conditions a_{i1}y(0)+a_{i2}y′(0)+a_{i3}y(π)+a_{i4}y′(π)=0, i=1,2 is considered. Here n>1, λ is a complex parameter, q0(x),q1(x),...,q_{n-1}(x) are summable complex-valued functions, a_{ik} (i=1,2; k=1,2,3,4) are arbitrary complex numbers. It is proved that the system of eigenfunctions and associated eigenfunctions is complete in the space and using elementary asymptotical metods asymptotic formulas for the eigenvalues are obtained.


Sign in / Sign up

Export Citation Format

Share Document