Role of Pectin Substances in the Structural Organization of the Flax Fiber–Montmorillonite Hybrid Sorbent

2018 ◽  
Vol 91 (1) ◽  
pp. 90-95 ◽  
Author(s):  
O. V. Lepilova ◽  
S. V. Aleeva ◽  
S. A. Koksharov
2016 ◽  
Vol 12 (1) ◽  
pp. 4178-4187
Author(s):  
Michael A Persinger ◽  
Stanley A Koren

                The capacity for computer-like simulations to be generated by massive information processing from electron-spin potentials supports Bostrom’s hypothesis that matter and human cognition might reflect simulations. Quantitative analyses of the basic assumptions indicate the universe may display properties of a simulation where photons behave as pixels and gravitons control the structural organization. The Lorentz solution for the square of the light and entanglement velocities converges with the duration of a single electron orbit that ultimately defines properties of matter. The approximately one trillion potential states within the same space with respect to the final epoch of the universe indicate that a different simulation, each with intrinsic properties, has been and will be generated as a type of tractrix defined by ±2 to 3 days (total duration 5 to 6 days). It may define the causal limits within a simulation. Because of the intrinsic role of photons as the pixel unit, phenomena within which flux densities are enhanced, such as human cognition (particularly dreaming) and the cerebral regions associated with those functions, create the conditions for entanglement or excess correlations between contiguous simulations. The consistent quantitative convergence of operations indicates potential validity for this approach. The emergent solutions offer alternative explanations for the limits of predictions for multivariate phenomena that could be coupled to more distal simulations.


2021 ◽  
pp. 22-32
Author(s):  
A.M. Shestakov ◽  

Shows the scientific approaches of various authors to the study of the microstructure of ceramics, the purpose of which is to elucidate its structural organization at the micro- and nanoscale, as well as the influence of the microstructure on the complex of material properties. Various instrumental methods for studying ceramics (NMR spectroscopy, electron microscopy, х-ray structural analysis, etc.) are considered, the permissible capabilities of research methods and analysis of the results obtained with their correct interpretation are shown. The special role of theoretical modeling in understanding the structure of the considered ceramic materials is noted.


2021 ◽  
Vol 585 (1) ◽  
pp. 40-51
Author(s):  
Nadezhda D. Gavrilova ◽  
Inna A. Malyshkina ◽  
Olga D. Novik

2017 ◽  
Vol 19 (34) ◽  
pp. 23194-23203 ◽  
Author(s):  
Debashis Majhi ◽  
Moloy Sarkar

With the aim to understand the role of the ionic constituents of ionic liquids (ILs) in their structural organization, resonance energy transfer (RET) studies between ionic liquids (donor) and rhodamine 6G (acceptor) have been investigated.


2019 ◽  
Vol 7 (33) ◽  
pp. 19258-19268 ◽  
Author(s):  
Indranil Mondal ◽  
Song Yi Moon ◽  
Hyunhwa Lee ◽  
Heeyoung Kim ◽  
Jeong Young Park

Optimization of structural organization between metal and semiconductor electrocatalyst reveals the hot role of quasi-epitaxial heterojunction in hot electron transfer for synergistic photocatalysis.


2019 ◽  
Vol 5 (4) ◽  
pp. eaav7803 ◽  
Author(s):  
Yan Liu ◽  
Jieyu Qi ◽  
Xin Chen ◽  
Mingliang Tang ◽  
Cenfeng Chu ◽  
...  

Inner ear hair cells (HCs) detect sound through the deflection of mechanosensory stereocilia. Stereocilia are inserted into the cuticular plate of HCs by parallel actin rootlets, where they convert sound-induced mechanical vibrations into electrical signals. The molecules that support these rootlets and enable them to withstand constant mechanical stresses underpin our ability to hear. However, the structures of these molecules have remained unknown. We hypothesized that αII- and βII-spectrin subunits fulfill this role, and investigated their structural organization in rodent HCs. Using super-resolution fluorescence imaging, we found that spectrin formed ring-like structures around the base of stereocilia rootlets. These spectrin rings were associated with the hearing ability of mice. Further, HC-specific, βII-spectrin knockout mice displayed profound deafness. Overall, our work has identified and characterized structures of spectrin that play a crucial role in mammalian hearing development.


BIOPHYSICS ◽  
2020 ◽  
Vol 65 (2) ◽  
pp. 202-212
Author(s):  
E. V. Chikhirzhina ◽  
T. Yu. Starkova ◽  
A. M. Polyanichko

Sign in / Sign up

Export Citation Format

Share Document