Dependence of Axisymmetric Bending of a Circular Plate on Boundary Conditions and Pressure on Its Surface

2020 ◽  
Vol 41 (7) ◽  
pp. 1216-1221
Author(s):  
M. A. Il’gamov ◽  
V. E. Moiseeva
1979 ◽  
Vol 46 (1) ◽  
pp. 26-30 ◽  
Author(s):  
J. W. Berglund

The transient dynamic response of an elastic circular plate subjected to a suddenly applied pressure is determined for several edge boundary conditions. The plate boundary is attached to a semi-infinite, radially rigid tube which is filled with an acoustic fluid, and pressure is applied to the in-vacuo side of the plate. The transient solution is determined by using a technique in which the plate is subjected to a periodic pressure function constructed of appropriately signed and time-shifted Heaviside step functions, and by relying on a physical mechanism which returns the plate and fluid near the plate to an unstrained state of rest between pulses. The plate response is presented for a number of radius-to-thickness ratios and edge boundary conditions when interacting with water. Comparisons are also made with solutions obtained using a plane wave approximation to the fluid field.


2018 ◽  
Vol 38 (2) ◽  
pp. 558-573 ◽  
Author(s):  
Yongqiang Yang ◽  
Zhongmin Wang ◽  
Yongqin Wang

Rotating friction circular plates are the main components of a friction clutch. The vibration and temperature field of these friction circular plates in high speed affect the clutch operation. This study investigates the thermoelastic coupling vibration and stability of rotating friction circular plates. Firstly, based on the middle internal forces resulting from the action of normal inertial force, the differential equation of transverse vibration with variable coefficients for an axisymmetric rotating circular plate is established by thin plate theory and thermal conduction equation considering deformation effect. Secondly, the differential equation of vibration and corresponding boundary conditions are discretized by the differential quadrature method. Meanwhile, the thermoelastic coupling transverse vibrations with three different boundary conditions are calculated. In this case, the change curve of the first two-order dimensionless complex frequencies of the rotating circular plate with the dimensionless angular speed and thermoelastic coupling coefficient are analyzed. The effects of the critical dimensionless thermoelastic coupling coefficient and the critical angular speed on the stability of the rotating circular plate with simply supported and clamped edges are discussed. Finally, the relation between the critical divergence speed and the dimensionless thermoelastic coupling coefficient is obtained. The results provide the theoretical basis for optimizing the structure and improving the dynamic stability of friction clutches.


Author(s):  
H. T. Banks ◽  
R. C. Smith ◽  
Yun Wang

Abstract The problems associated with maintaining truly fixed (zero displacement and slope) or simple (zero displacement and moment) boundary conditions in applications involving vibrating structures have led to the development of models which admit slight rotation and displacement at the boundaries. In this paper, numerical examples demonstrating the dynamics of a model for a circular plate with imperfectly clamped boundary conditions are presented. The latitude gained when using the model for estimating parameters through fit-to-data techniques is also demonstrated. Through these examples, the manner in which the model accounts for the physical manifestation of imperfectly clamped edges is illustrated, and issues regarding the use of the model in physical experiments are defined.


1952 ◽  
Vol 19 (1) ◽  
pp. 9-12
Author(s):  
A. M. Sen Gupta

Abstract The problem of small-deflection theory applicable to plates of cylindrically aeolotropic material has been developed, and expressions for moments and deflections produced have been found by Carrier in some symmetrical cases under uniform lateral loadings and with different boundary conditions. The author has also found the moments and deflection in the case of an unsymmetrical bending of a plate loaded by a distribution of pressure of the form p = p0r cos θ, with clamped edge. The object of the present paper is to investigate the problem of the bending of a cylindrically aeolotropic circular plate of uniform thickness under a concentrated load P applied at a point A at a distance b from the center, the edge being clamped.


Author(s):  
Amit K Rai ◽  
Shakti S Gupta

Here, we have studied the linear and nonlinear vibrations of a thin circular plate subjected to circularly, radially, and spirally moving transverse point loads. We follow Kirchoff’s theory and then incorporate von Kármán nonlinearity and employ Hamilton’s principle to obtain the governing equations and the associated boundary conditions. We solve the governing equations for the simply-supported and clamped boundary conditions using the mode summation method. Using the harmonic balance method for frequency response and Runge-Kutta method for time response, we solve the resulting coupled and cubic nonlinear ordinary differential equations. We show that the resonance instability due to a circularly moving load can be avoided by splitting it into multiple loads rotating at the same radius and angular speed. With the increasing magnitude of the rotating load, the frequency response of the transverse displacement shows jumps and modal interaction. The transverse response collected at the centre of the plate shows subharmonics of the axisymmetric frequencies only. The spectrum of the linear response due to spirally moving load contains axisymmetric frequencies, the angular speed of the load, their combination, and superharmonics of axisymmetric frequencies.


Sign in / Sign up

Export Citation Format

Share Document