scholarly journals Thermoelastic coupling vibration and stability analysis of rotating circular plate in friction clutch

2018 ◽  
Vol 38 (2) ◽  
pp. 558-573 ◽  
Author(s):  
Yongqiang Yang ◽  
Zhongmin Wang ◽  
Yongqin Wang

Rotating friction circular plates are the main components of a friction clutch. The vibration and temperature field of these friction circular plates in high speed affect the clutch operation. This study investigates the thermoelastic coupling vibration and stability of rotating friction circular plates. Firstly, based on the middle internal forces resulting from the action of normal inertial force, the differential equation of transverse vibration with variable coefficients for an axisymmetric rotating circular plate is established by thin plate theory and thermal conduction equation considering deformation effect. Secondly, the differential equation of vibration and corresponding boundary conditions are discretized by the differential quadrature method. Meanwhile, the thermoelastic coupling transverse vibrations with three different boundary conditions are calculated. In this case, the change curve of the first two-order dimensionless complex frequencies of the rotating circular plate with the dimensionless angular speed and thermoelastic coupling coefficient are analyzed. The effects of the critical dimensionless thermoelastic coupling coefficient and the critical angular speed on the stability of the rotating circular plate with simply supported and clamped edges are discussed. Finally, the relation between the critical divergence speed and the dimensionless thermoelastic coupling coefficient is obtained. The results provide the theoretical basis for optimizing the structure and improving the dynamic stability of friction clutches.

2019 ◽  
Vol 2019 ◽  
pp. 1-18
Author(s):  
Yongqiang Yang ◽  
Zhongmin Wang

This study investigates the thermoelastic coupling vibration and stability of rotating annular sector plates. Based on Hamilton’s principle and thermal conduction equation with deformation effect, the differential equation of transverse vibration for a rotating annular sector plate is established. The differential equation of vibration and corresponding boundary conditions are discretized by the differential quadrature method. Then, the thermoelastic coupling transverse vibrations under three different boundary conditions are calculated. The change curve of the first three order dimensionless complex frequencies of the rotating annular sector plate with the dimensionless angular speed are analyzed in the case of the thermoelastic coupling and uncoupling. The effects of the dimensionless angular speed, the ratio of inner to outer radius, the sector angle, and the dimensionless thermoelastic coupling coefficient on transverse vibration and stability of the annular sector plate are discussed. Finally, we obtained the type of instability and corresponding critical speed of the rotating annular sector plate in the case of the thermoelastic coupling and uncoupling.


Author(s):  
Amit K Rai ◽  
Shakti S Gupta

Here, we have studied the linear and nonlinear vibrations of a thin circular plate subjected to circularly, radially, and spirally moving transverse point loads. We follow Kirchoff’s theory and then incorporate von Kármán nonlinearity and employ Hamilton’s principle to obtain the governing equations and the associated boundary conditions. We solve the governing equations for the simply-supported and clamped boundary conditions using the mode summation method. Using the harmonic balance method for frequency response and Runge-Kutta method for time response, we solve the resulting coupled and cubic nonlinear ordinary differential equations. We show that the resonance instability due to a circularly moving load can be avoided by splitting it into multiple loads rotating at the same radius and angular speed. With the increasing magnitude of the rotating load, the frequency response of the transverse displacement shows jumps and modal interaction. The transverse response collected at the centre of the plate shows subharmonics of the axisymmetric frequencies only. The spectrum of the linear response due to spirally moving load contains axisymmetric frequencies, the angular speed of the load, their combination, and superharmonics of axisymmetric frequencies.


Symmetry ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 429 ◽  
Author(s):  
Krzysztof Żur ◽  
Piotr Jankowski

Free vibration analysis of the porous functionally graded circular plates has been presented on the basis of classical plate theory. The three defined coupled equations of motion of the porous functionally graded circular/annular plate were decoupled to one differential equation of free transverse vibrations of plate. The one universal general solution was obtained as a linear combination of the multiparametric special functions for the functionally graded circular and annular plates with even and uneven porosity distributions. The multiparametric frequency equations of functionally graded porous circular plate with diverse boundary conditions were obtained in the exact closed-form. The influences of the even and uneven distributions of porosity, power-law index, diverse boundary conditions and the neglected effect of the coupling in-plane and transverse displacements on the dimensionless frequencies of the circular plate were comprehensively studied for the first time. The formulated boundary value problem, the exact method of solution and the numerical results for the perfect and imperfect functionally graded circular plates have not yet been reported.


1968 ◽  
Vol 90 (2) ◽  
pp. 279-293
Author(s):  
J. C. Heap

The basic equations of deflection, slope, and moments for a thin, flat, circular plate subjected to a uniform load on a concentric circle were derived for four generalized cases. From these generalized cases, six simplified cases were deduced. The four generalized cases have the uniform load acting on a concentric circle of the plate between the inner and outer edges, with the following boundary conditions: (a) Outer edge supported and fixed, inner edge fixed; (b) outer edge simply supported, inner edge free; (c) outer edge simply supported, inner edge fixed; and (d) outer edge supported and fixed, inner edge free.


2021 ◽  
pp. 105
Author(s):  
O.V. Bugrim ◽  
Ye.S. Sinaiskii

The problem about the bend of circular plate of variable thickness under specifically selected laws of rigidity change is reduced to the ordinary differential equation with variable coefficients of polynomial kind. The construction of the approximate solution of equation that satisfies boundary conditions is realized by means of canonical polynomials and $\tau$-method of Lantzosh.


Author(s):  
Dumitru I. Caruntu

This paper presents an approach for finding the solution of the partial differential equation of motion of the non-axisymmetrical transverse vibrations of axisymmetrical circular plates of convex parabolical thickness. This approach employed both the method of multiple scales and the factorization method for solving the governing partial differential equation. The solution has been assumed to be harmonic angular-dependent. Using the method of multiple scales, the partial differential equation has been reduced to two simpler partial differential equations which can be analytically solved and which represent two levels of approximation. Solving them, the solution resulted as first-order approximation of the exact solution. Using the factorization method, the first differential equation, homogeneous and consisting of fourth-order spatial-dependent and second-order time-dependent operators, led to a general solution in terms of hypergeometric functions. Along with given boundary conditions, the first differential equation and the second differential equation, which was nonhomogeneous, gave respectively so-called zero-order and first-order approximations of the natural frequencies and mode shapes. Any boundary conditions could be considered. The influence of Poisson’s ratio on the natural frequencies and mode shapes. Any boundary conditions could be considered. The influence of Poisson’s ratio on the natural frequencies and mode shapes could be further studied using the first-order approximations reported here. This approach can be extended to nonlinear, and/or forced vibrations.


Author(s):  
Abhijit Ghosh ◽  
Anirvan DasGupta

In this work, we propose a general perturbative approach for modal analysis of irregular-shaped plates of uniform thickness with uniform boundary conditions. Given a plate of irregular boundary, first, a uniform circular plate of identical thickness and area, centred at the centroid, is determined. The irregular boundary is then treated as a perturbation with a suitable smallness parameter, and is expressed as a generalized Fourier series. The frequency parameter, shape function and boundary conditions are then perturbed in terms of the smallness parameter. The homogeneous zeroth-order equation corresponds to the circular plate, which is exactly solvable. We show that the inhomogeneous equations in the higher orders can also be solved exactly using a particular solution structure. We can then construct the exact perturbative solution up to any order. The proposed method is demonstrated through the modal analysis of simply supported super-circular plates. The results are validated using the numerical results obtained from ANSYS ® , which are an excellent match. Interestingly, the supposedly degenerate modes with an even number of nodal diameters of super-circular plates are found to split naturally.


Author(s):  
Krzysztof Kamil Żur

Free axisymmetric and non-axisymmetric vibration analysis of the unsaturated porous functionally graded circular plates has been presented on the basis of classical plate theory. The defined coupled equations of motion for the porous functionally graded circular plate were decoupled based on the properties of the physical neutral surface. The one general solution of the decoupled equation of motion was obtained as linear combinations of the multiparametric special Bessel functions for the functionally graded circular plate with even and uneven porosity distributions. The influences of the even and uneven distributions of porosity, gradient index, diverse boundary conditions and the negligible effect of the coupling in-plane and transverse displacements on the dimensionless frequencies of the circular plate were comprehensively studied. The obtained numerical results show the differences and significant effect of considered types of distributions of porosities, values of the gradient index and the porosity volume fraction on the distribution of eigenfrequencies of the circular plates. Additionally, the obtained multiparametric general solution of the defined differential equation will allow to study the influences of diverse additional complicating effects such as stepped thickness, cracks, additional mounted elements expressed by only additional boundary conditions on the dynamic behavior of the porous functionally graded circular/annular plates. The formulated boundary value problem, the method of solution and the obtained numerical results for the perfect and imperfect functionally graded circular plates have not yet been reported. The present paper fills this void in the literature.


Author(s):  
Krzysztof Kamil Żur ◽  
Piotr Jankowski

Free vibration analysis of the porous functionally graded circular plates has been presented on the basis of classical plate theory. The three defined coupled equations of motion of the porous functionally graded circular/annular plate were decoupled to one differential equation of free transverse vibrations of plate. The one universal general solution was obtained as linear combination of the multiparametric special functions for the functionally graded circular and annular plates with even and uneven porosity distributions. The multiparametric frequency equations of functionally graded porous circular plate with diverse boundary conditions were obtained in the exact closed-form. The influences of the even and uneven distributions of porosity, power-law index, diverse boundary conditions and the negligibled effect of the coupling in-plane and transverse displacements on the dimensionless frequencies of the circular plate were comprehensively studied for the first time. The formulated boundary value problem, the exact method of solution and the numerical results for the perfect and imperfect functionally graded circular plates have not yet been reported.


Sign in / Sign up

Export Citation Format

Share Document