Binders Based on Mixtures of Epoxy Polymers and Thermoelastoplasts. Part 1. Relaxation Properties of Epoxy Polymers Modified by Polybutadieneterephtalate–Polytetramethyleneoxide Block Copolymers

2021 ◽  
Vol 14 (4) ◽  
pp. 547-552
Author(s):  
Yu. S. Kochergin ◽  
T. I. Hryhorenko ◽  
Wu Yiqi
Author(s):  
Ю. Кочергин ◽  
Yuriy Kochergin ◽  
Т. Григоренко ◽  
Tatyana Grigorenko ◽  
В. Золотарева ◽  
...  

The effect of low-molecular polysulfones (oligosulfones) on the static and dynamic relaxation properties of epoxy polymers based on industrial resin ED-20 is studied. It is established that the modification of oligosulfones with terminal carboxyl, phenolic groups and a molecular weight from 1200 to 44500 leads to the formation of epoxy systems with higher performance in terms of development of static processes of creep and stress relaxation. It is demonstrated that the dynamic shear modulus increases with the introduction of the modifier. The magnitude of this effect is proportional to the molecular weight of oligosulfones. The intensities of the high-temperature α-transition at 390 K and the low-temperature β-transition at 208 K decrease with the introduction of the modifier. The improvement of the relaxation properties is associated with an increase in the density of the chemical grid of the epoxy matrix with the introduction of modifiers, its saturation with more rigid and heat-resistant component and the formation of additional intermolecular bonds between the components of the system


1977 ◽  
Vol 19 (12) ◽  
pp. 3163-3173 ◽  
Author(s):  
P.I Zubov ◽  
T.A Andryushchenko ◽  
A.A Askadskii

1971 ◽  
Vol 3 (3) ◽  
pp. 268-271
Author(s):  
Yu. N. Panov ◽  
A. M. Stalevich ◽  
V. G. Tiranov ◽  
L. K. Yakovenko ◽  
S. Ya. Frenkel

Author(s):  
Y. Kochergin ◽  
Tatyana Grigorenko ◽  
V. Zolotareva

The influence of thermoplastic elastomers, which are two-block statistical block copolymers based on polybutylene terephthalate and polytetramethylene oxide with a different ratio of rigid and elastic blocks, on the static and dynamic mechanical properties of epoxy polymers is studied. The initial compounds for the synthesis of block copolymers are dimethyl terephthalate, 1,4-butanediol and polytetramethylenoxide with a molecular weight of 2000. The tetrabutoxide is used as catalyst. The process of interaction of the initial components is carried out in two stages, the reaction of transesterification and copolycondensation is consistently carried out. The composition of BSP is set by the ratio of initial reagents. The total molecular weight of block copolymers is 30–40 thousand. The method of dynamic mechanical analysis shows that the introduction of modifiers leads to a decrease in molecular mobility in a wide temperature range from low-temperature (at 220K) to high-temperature (at 380K) relaxation transitions. The magnitude of the effect depends on the ratio of rigid and flexible blocks in the block copolymer. It is assumed that the decrease in the tangent of the angle of mechanical losses at temperatures below the glass transition temperature and especially in the region of the β-transition, may be associated with the slowdown of relaxation processes at the interface of the epoxide matrix with rigid blocks of thermoplastic elastomer. The observed effects in the region of high-temperature transition may be associated with the restriction of freedom of conformational rearrangements near the interface of the epoxy polymer with polybutylene terephthalate and polytetramethylene oxide blocks and an increase in the cross-linking density of the epoxy. A noticeable decrease in the magnitude and creep rate of epoxy composites is found when thermoelastoplast is introduced.


2002 ◽  
Vol 724 ◽  
Author(s):  
Elizabeth R. Wright ◽  
R. Andrew McMillan ◽  
Alan Cooper ◽  
Robert P. Apkarian ◽  
Vincent P. Conticello

AbstractTriblock copolymers have traditionally been synthesized with conventional organic components. However, triblock copolymers could be synthesized by the incorporation of two incompatible protein-based polymers. The polypeptides would differ in their hydrophobicity and confer unique physiochemical properties to the resultant materials. One protein-based polymer, based on a sequence of native elastin, that has been utilized in the synthesis of biomaterials is poly (Valine-Proline-Glycine-ValineGlycine) or poly(VPGVG) [1]. This polypeptide has been shown to have an inverse temperature transition that can be adjusted by non-conservative amino acid substitutions in the fourth position [2]. By combining polypeptide blocks with different inverse temperature transition values due to hydrophobicity differences, we expect to produce amphiphilic polypeptides capable of self-assembly into hydrogels. Our research examines the design, synthesis and characterization of elastin-mimetic block copolymers as functional biomaterials. The methods that are used for the characterization include variable temperature 1D and 2D High-Resolution-NMR, cryo-High Resolutions Scanning Electron Microscopy and Differential Scanning Calorimetry.


Author(s):  
Mark J. Newman ◽  
Jeffrey K. Actor ◽  
Mannersamy Balusubramanian ◽  
Chinnaswamy Jagannath
Keyword(s):  

2019 ◽  
Author(s):  
Jacob Ishibashi ◽  
Yan Fang ◽  
Julia Kalow

<p>Block copolymers are used to construct covalent adaptable networks that employ associative exchange chemistry (vitrimers). The resulting vitrimers display markedly different nanostructural, thermal and rheological properties relative to those of their statistical copolymer-derived counterparts. This study demonstrates that prepolymer sequence is a versatile strategy to modify the properties of vitrimers.</p>


Sign in / Sign up

Export Citation Format

Share Document