Random errors in equilibrium composition of ternary liquid-liquid systems and their effect on the calculated number of theoretical stages of countercurrent extraction

1988 ◽  
Vol 53 (1) ◽  
pp. 34-44
Author(s):  
Ján Dojčanský ◽  
Soňa Bafrncová ◽  
Július Surový

The influence of size of random errors in the determination of ternary liquid-liquid equilibrium concentrations on the accuracy of the calculated number of theoretical stages of a countercurrent extractor is evaluated by using five hypothetical systems differing in the extent of mutual solubility of components, tie-line slope, and type of binodal curve.

1988 ◽  
Vol 53 (6) ◽  
pp. 1172-1180
Author(s):  
Ján Dojčanský ◽  
Soňa Bafrncová ◽  
Július Surový

The influence of magnitude of systematic errors in the determination of ternary liquid-liquid equilibrium concentrations on the accuracy of the calculated number of theoretical stages of countercurrent extraction is evaluated on using five hypothetical systems differing in the extent of mutual solubility of components, tie-line slope, and type of binodal curve.


1989 ◽  
Vol 54 (4) ◽  
pp. 981-989
Author(s):  
Ján Dojčanský ◽  
Soňa Bafrncová ◽  
Július Surový

On using five hypothetical systems differing in the extent of mutual solubility of components, tie-line slope, and type of binodal curve, the effect is evaluated of systematic errors in the form of absolute deviation in the liquid-liquid equilibrium distribution concentrations on the accuracy of calculated number of theoretical stages of isothermal countercurrent extraction under various operating conditions.


1990 ◽  
Vol 55 (5) ◽  
pp. 1162-1174
Author(s):  
Ján Dojčanský ◽  
Soňa Bafrncová ◽  
Július Surový

On using five hypothetical systems differing in the extent of mutual solubility of components, tie-line slope, and type of binodal curve, the effect is evaluated of random and systematic errors in the liquid-liquid equilibrium distribution concentrations on the accuracy of calculated number of theoretical stages of isothermal countercurrent extraction under different operating conditions.


1978 ◽  
Vol 48 ◽  
pp. 7-29
Author(s):  
T. E. Lutz

This review paper deals with the use of statistical methods to evaluate systematic and random errors associated with trigonometric parallaxes. First, systematic errors which arise when using trigonometric parallaxes to calibrate luminosity systems are discussed. Next, determination of the external errors of parallax measurement are reviewed. Observatory corrections are discussed. Schilt’s point, that as the causes of these systematic differences between observatories are not known the computed corrections can not be applied appropriately, is emphasized. However, modern parallax work is sufficiently accurate that it is necessary to determine observatory corrections if full use is to be made of the potential precision of the data. To this end, it is suggested that a prior experimental design is required. Past experience has shown that accidental overlap of observing programs will not suffice to determine observatory corrections which are meaningful.


1983 ◽  
Vol 48 (1) ◽  
pp. 192-198 ◽  
Author(s):  
Tomáš Boublík

The excess entropy of mixing of mixtures of hard spheres and spherocylinders is determined from an equation of state of hard convex bodies. The obtained dependence of excess entropy on composition was used to find the accuracy of determining ΔSE from relations employed for the correlation and prediction of vapour-liquid equilibrium. Simple rules were proposed for establishing the mean parameter of nonsphericity for mixtures of hard bodies of different shapes allowing to describe the P-V-T behaviour of solutions in terms of the equation of state fo pure substance. The determination of ΔSE by means of these rules is discussed.


2016 ◽  
Vol 70 (12) ◽  
Author(s):  
Leonid Serafimov ◽  
Anastasia Frolkova

AbstractA method for the determination of vapor–liquid phase diagram structure of five-component systems based on the analysis of types and Poincare indexes of singular points of the geometric scan and full structure of the concentration simplex is proposed. Validity of the proposed method was demonstrated by vapor–liquid equilibrium modeling in five-component mixtures: ethanol + water + toluene + butanol + chlorbenzene and acetone + chloroform + ethanol + cyclohexane + water.


1971 ◽  
Vol 14 (4) ◽  
pp. 252-256 ◽  
Author(s):  
Kunio Nagahama ◽  
Seijiro Suda ◽  
Toshikatsu Hakuta ◽  
Mitsuho Hirata

1989 ◽  
Vol 54 (3) ◽  
pp. 581-585 ◽  
Author(s):  
Květuše Říčná ◽  
Jaroslav Matouš ◽  
Josef P. Novák ◽  
Vladimír Kubíček

Liquid-liquid equilibrium at 5, 25, and 50 °C was measured in the water-ethanol-toluene system. Special attention was paid to the determination of distribution coefficient of ethanol. Besides, the composition and boiling point of azeotropic mixture at normal pressure were determined.


Sign in / Sign up

Export Citation Format

Share Document