The effect of systematic errors of the equilibrium distribution concentrations on the number of stages of countercurrent extraction with various consumption of extractant

1989 ◽  
Vol 54 (4) ◽  
pp. 981-989
Author(s):  
Ján Dojčanský ◽  
Soňa Bafrncová ◽  
Július Surový

On using five hypothetical systems differing in the extent of mutual solubility of components, tie-line slope, and type of binodal curve, the effect is evaluated of systematic errors in the form of absolute deviation in the liquid-liquid equilibrium distribution concentrations on the accuracy of calculated number of theoretical stages of isothermal countercurrent extraction under various operating conditions.

1990 ◽  
Vol 55 (5) ◽  
pp. 1162-1174
Author(s):  
Ján Dojčanský ◽  
Soňa Bafrncová ◽  
Július Surový

On using five hypothetical systems differing in the extent of mutual solubility of components, tie-line slope, and type of binodal curve, the effect is evaluated of random and systematic errors in the liquid-liquid equilibrium distribution concentrations on the accuracy of calculated number of theoretical stages of isothermal countercurrent extraction under different operating conditions.


1988 ◽  
Vol 53 (6) ◽  
pp. 1172-1180
Author(s):  
Ján Dojčanský ◽  
Soňa Bafrncová ◽  
Július Surový

The influence of magnitude of systematic errors in the determination of ternary liquid-liquid equilibrium concentrations on the accuracy of the calculated number of theoretical stages of countercurrent extraction is evaluated on using five hypothetical systems differing in the extent of mutual solubility of components, tie-line slope, and type of binodal curve.


1988 ◽  
Vol 53 (1) ◽  
pp. 34-44
Author(s):  
Ján Dojčanský ◽  
Soňa Bafrncová ◽  
Július Surový

The influence of size of random errors in the determination of ternary liquid-liquid equilibrium concentrations on the accuracy of the calculated number of theoretical stages of a countercurrent extractor is evaluated by using five hypothetical systems differing in the extent of mutual solubility of components, tie-line slope, and type of binodal curve.


1992 ◽  
Vol 57 (9) ◽  
pp. 1867-1878
Author(s):  
Ján Dojčanský ◽  
Soňa Bafrncová ◽  
Július Surový

The effect of random and systematic errors in the determination of the equilibrium temperature on the phase composition in isobaric L-G equilibria was simulated on five binary systems with different size and relative volatility. The impact of the inaccuracies on the calculated number of theoretical stages of a continuously operating rectification column is discussed with respect to the different operating conditions of the separatory process.


Author(s):  
Longyun Wang ◽  
Zhi Tao ◽  
Jianqin Zhu ◽  
Haiwang Li ◽  
Zeyuan Cheng

A new empirical correlation for upward flowing supercritical aviation kerosene RP-3 in the vertical tubes is proposed. In order to obtain the database, numerical simulation with a four-component surrogate model on RP-3 and LS low Reynolds turbulence model in vertical circular tube has been performed. Tubes of diameter 2mm to 10mm are studied and operating conditions cover pressure from 3MPa to 6MPa. Heat flux is 500KW/m2, mass flow rate is 700kg/(m2·s). The numerical results on wall temperature distribution under various conditions are compared with experimental data and a good agreement is achieved. The existing correlations are summarized and classified into three categories. Three representative correlations of each category are selected out to evaluate the applicability in heat transfer of supercritical RP-3. The result shows that correlations concluded from water and carbon-dioxide do not perform well in predicting heat transfer of hydrocarbon fuel. The mean absolute deviation of them is up to 20% and predict about 80% of the entire database within 30% error bands. So a new correlation which is applicable to different working conditions for supercritical RP-3 is put forward. Gnielinski type has been adapted as the basis of the new correlation for its higher accuracy. In consideration of major influence factors of supercritical heat transfer, correction terms of density and buoyancy effect are added in. The new correlation has a MAD of 9.26%, predicting 90.6% of the entire database within ±15% error bands. The comparisons validate the applicability of the new correlation.


2020 ◽  
pp. 174751982096417
Author(s):  
Ruilei Zhang ◽  
Yandong Tang ◽  
Weifeng Shan ◽  
Haijun Liu ◽  
Haijun Li ◽  
...  

The absorption and desorption data of CO2 in aqueous solutions with a mass fraction of 10% and 20% of diethylenetriamine are measured at 313.15, 343.15, 373.15, and 393.15 K. The electrolyte non-random two-liquid theory is developed using Aspen V9.0 to correlate and predict the vapor–liquid equilibrium of CO2 in aqueous diethylenetriamine solutions. The model predicted the heat capacity and saturated vapor pressure data of diethylenetriamine, the mixed heat of a diethylenetriamine–H2O binary system, and the vapor–liquid equilibrium data of a diethylenetriamine–H2O–CO2 ternary system. The physical parameters and the interaction parameters of the model system are calculated. The model predicted CO2 solubility showing a 10% average absolute deviation from experimental data. The calculated values of the model are basically consistent with the experimental values.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
S. Balasubramonian ◽  
Shekhar Kumar ◽  
D. Sivakumar ◽  
U. Kamachi Mudali

The liquid-liquid equilibrium (LLE) for the system water-dodecane-butanol was estimated using the UNIQUAC model. In the UNIQUAC model interaction parameters were estimated from the vapor-liquid equilibrium (VLE) and LLE data of their constituent binary pairs. The water-dodecane-butanol LLE was experimentally measured at 298.15 K. Phase stability constraints were taken into account while calculating the binary interaction parameters from the mutual solubility data. The COSMO-RS method was used to estimate the activity coefficient in the miscible binary pair. The ternary LLE composition was predicted using the experimental VLE data as well as using the COSMO-RS calculated activity coefficient data along with the experimental mutual solubility data. In the latter case the root mean square deviation (RMSD) for the distribution of butanol between aqueous and organic phase is 0.24%. The corresponding UNIFAC model prediction is 7.63%.


Sign in / Sign up

Export Citation Format

Share Document