Ab initio MO study of protonation of carbamic acid, methyl carbamate and methyl N-methylcarbamate

1988 ◽  
Vol 53 (6) ◽  
pp. 1141-1148 ◽  
Author(s):  
Milan Remko

The ab initio SCF method was applied to the protonation of the carbonyl group in carbamic acid and its methyl derivatives, viz. methyl carbamate and methyl N-methylcarbamate. Complete geometry optimization was accomplished for these compounds and their protonated species using the MINI-1, 3-21 G, and 6-31 G* bases and the proton affinities were calculated at the MINI-1, 3-21 G, 6-31 G*, and 6-31 G** levels. 2nd and 3rd order Moller-Plesset perturbation calculations were also performed for examining the effect of the correlation energy on the calculated protonation energies. The carbonyl protonation energies were found to increase in order carbamic acid < methyl carbamate < methyl N-methylcarbamate. The absolute values of calculated gas phase proton affinities depend on the basis used and way of evaluating the correlation energy. The results are discussed with respect to the theoretical proton affinities of structurally related amides and to related available theoretical gas phase proton affinities.

1987 ◽  
Vol 52 (1) ◽  
pp. 6-13 ◽  
Author(s):  
Petr Kyselka ◽  
Zdeněk Havlas ◽  
Ivo Sláma

The paper deals with the solvation of Li+, Be2+, Na+, Mg2+, and Al3+ ions in dimethyl sulphoxide, dimethylformamide, acetonitrile, and water. The ab initio quantum chemical method was used to calculate the solvation energies, molecular structures, and charge distributions for the complexes water···ion, acetonitrile···ion, dimethyl sulphoxide···ion, and dimethylformamide···ion. The interaction energies were corrected for the superposition error. Complete geometry optimization was performed for the complex water···ion. Some generalizations are made on the basis of the results obtained.


1981 ◽  
Vol 36 (11) ◽  
pp. 1246-1252 ◽  
Author(s):  
Michael H. Palmer ◽  
Isobel Simpson ◽  
J. Ross Wheeler

The photoelectron spectra of the tautomeric 1,2,3,- and 1,2,4-triazole and 1,2,3,4-tetrazole systems have been compared with the corresponding N-methyl derivatives. The dominant tautomers in the gas phase have been identified as 2 H-1,2,3-triazole, 1 H-1,2,4-triazole and 2H-tetrazole.Full optimisation of the equilibrium geometry by ab initio molecular orbital methods leads to the same conclusions, for relative stability of the tautomers in each of the triazoles, but the calculations wrongly predict the tetrazole tautomerism.


2006 ◽  
Vol 05 (04) ◽  
pp. 835-855 ◽  
Author(s):  
SHRIDHAR R. GADRE ◽  
V. GANESH

The development of a fragmentation-based scheme, viz. molecular tailoring approach (MTA) for ab initio computation of one-electron properties and geometry optimization is described. One-electron properties such as the molecular electrostatic potential (MESP), molecular electron density (MED), and dipole moments are computed by synthesizing the density matrix (DM) of the parent molecule from DMs of its small overlapping fragments. The electron density obtained via MTA was found to be typically within 0.5% of its actual counterpart, while maximum errors of about 2% were noticed in the case of the dipole moment and MESP distribution. An attempt is made to develop MTA-based geometry optimization that involves picking relevant energy gradients from fragment self-consistent field (SCF) calculations, bypassing the CPU and memory extensive SCF step of the complete molecule. This is based on the observation that the MTA gradients mimic the actual ones fairly well. As the calculations on individual fragments are mutually independent, this algorithm is amenable to large-scale parallelization and has been extended to a distributed setup of PCs. The code developed is put to test on γ-cyclodextrin, taxol, and a small albumin-binding protein (1prb) for one-electron properties. Further, molecules such as γ-cyclodextrin, taxol, a silicalite, and 1prb are subjected to MTA-based geometry optimization, on a PC cluster. The results indicate a favorable speedup of two to three times over the actual computations in the initial phase of optimization. Furthermore, it enables computations otherwise not possible on a PC. Preliminary results indicate similar savings with sustained accuracy even for large molecules at the level of Møller–Plesset second order perturbation (MP2) theory.


2010 ◽  
Vol 4 (2) ◽  
pp. 106-109
Author(s):  
Cahyorini Kusumawardani

Ab initio molecular orbital calculations at the Hartree-Fock-Self Consistent Field (HF-SCF) have been performed in order to determine the structure and gas phase energies of complex formed by the Lewis bases of H2O, NH3, H2S and their methyl derivatives with the cation Co2+. The relative basicities of the base studied depend on both the substituent. The gas-phase interaction energies computed by the SCF method including electron correlation Møller-Plesset 2 (MP2) dan Configuration Iteration (CI) were comparable in accuracy. The binding energies computed by these two methods reach the targeted chemical accuracy.   Keywords: ab initio calculation, cobalt complex, structure stability


1993 ◽  
Vol 71 (4) ◽  
pp. 512-519 ◽  
Author(s):  
Zhonghua Yu ◽  
Congxiang Chen ◽  
Mingbao Huang

The mechanism of the reaction CH(X2π) + CH4 has been investigated by ab initio molecular orbital calculations. Addition, insertion, and abstraction–addition reaction paths have been examined by, in total, five methods of approach. The addition reaction path has a rather high energy barrier. Our calculations have implied that the assumed insertion reaction path does not seem to exist for the reaction CH + CH4, and a two-step mechanism (abstraction–addition reaction path) was then proposed. For the abstraction–addition reaction, the reactants, transition state, intermediates, and products were optimized at the HF/3-21G and HF/6-31G* levels, and vibrational frequencies were calculated at the HF/3-21G level. Electronic correlation energy was estimated by means of the Møller–Plesset perturbation theory and configuration interaction method. The excited-state abstraction reaction was also studied in some detail.


2011 ◽  
Vol 66 (8) ◽  
pp. 850-856 ◽  
Author(s):  
Ausra Vektariene ◽  
Gytis Vektaris

The ab initio calculations approach was used to determine the mechanism of interaction between propene and a sulfenyl halide. The second-order Møller-Plesset corrections for the electron correlation energy were applied to calculate the most probable Gibbs Free Energy profiles for the selected reaction. All optimized structures were confirmed by vibrational frequency analysis and intrinsic reaction coordinate calculations. Two possible reaction pathways were proposed and evaluated to conclusively characterize the reaction. The reaction proceeds via formation of a cyclic episulfonium intermediate, stereoselective ring opening of the episulfonium intermediate by the chloride anion, and isomerization of the adduct of the kinetically controlled reaction into the thermodynamically favorable product.


Sign in / Sign up

Export Citation Format

Share Document