The Effect of the Molecular Structure of Cyanine Dye on the Corrosion of Low-Carbon Steel in Hydrochloric Acid Solution

1994 ◽  
Vol 59 (3) ◽  
pp. 539-548 ◽  
Author(s):  
Mohamed Th. Makhlouf

The effect of two different cyanine dyes 2-(2-hydroxystyryl)quinolinium-1-ethyl iodide (I) and 4-(2-hydroxystyryl)quinolinium-1-ethyl iodide (II) on the electrochemical corrosion behaviour of low-carbon steel (0.05% C, 0.04% Si, 0.023% S, 0.004% Cu) in HCl solution has been studied. Weight loss measurements, galvanostatic polarization curves, open-circuit potential variation of steel electrode with time and the cathodic protective current values show that the investigated cyanine dyes have an anticorrosive character. The inhibition effect depends mainly on the structure of the studied dye molecules, and is more pronounced in case of pretreated carbon steel with the dye solution before immersion in the corrosion medium than that obtained by addition of the dye to the corrosive medium.

2021 ◽  
Vol 2 (108) ◽  
pp. 68-74
Author(s):  
M. Ali ◽  
J.H. Mohmmed ◽  
A.A. Zainulabdeen

Purpose: This work aimed at evaluating the properties of the ethyl silicate-based coating that can be applied on low carbon steel. Design/methodology/approach: Two mixture ratio types (2:1, and 3:2) of resin and hardener respectively were used to prepared two specimen models (A and B). Findings: It found that some mechanical properties (tensile, hardness, and impact strength) of ethyl silicate resin were evaluated according to standard criteria. Research limitations/implications: The effect of heat treatments at various temperatures (100, 150, and 200°C) and holding at different times (10, 20 & 30) min on hardness was investigated. Practical implications: Moreover, an open circuit potential corrosion test with a solution of 3.5% Sodium Chloride at room temperature and 60°C was used to determine the corrosion resistance of low carbon steel specimens coated with the two mixture types. Originality/value: The effects of mixture ratios (for resin and hardener) and heat treatment conditions on properties of ethyl silicate-based coating were studied. From obtained results, acceptable values of tensile, hardness, and toughness were recorded. Increasing heat treatment temperature and holding time leads to enhance hardness for both model types. An open circuit potential (OCP) tests show that there is an enhancement of protective properties of ethyl silicate coatings with mixture type B in comparison with type A was achieved. Generally, the results indicate that specimen model B has higher properties as compared with specimen model A.


2013 ◽  
Vol 686 ◽  
pp. 244-249 ◽  
Author(s):  
Poovarasi Balan ◽  
Aaron Ng ◽  
Chee Beng Siang ◽  
R.K. Singh Raman ◽  
Eng Seng Chan

Chromium pre-treatments of metal have been replaced by silane pre-treatments as more environmental friendly option. Nanoparticles can be added in the silane sol-gel network have been reported to improve corrosion resistance. In this work, the electrochemical corrosion resistance of low carbon steel coated with hybrid organic-inorganic sol-gel film filled with nanoparticles was evaluated. The sol-gel films have been synthesized from 3-glycidoxy-propyl-trimethoxy-silane (3-GPTMS) and tetra-ethyl-ortho-silicate (TEOS) precursors. These films have been impregnated with 300 ppm of silica or alumina nanoparticles. The electrochemical behavior of the coated steel was evaluated by means of electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM). Equivalent circuit modeling, used for quantifying the EIS measurements showed that sol-gel films containing silica nanoparticles improved the barrier properties of the silane coating. The silica nanoparticle-containing films showed highest initial pore resistance over the five days of immersion in 0.05M NaCl.


2015 ◽  
Vol 62 (4) ◽  
pp. 246-252 ◽  
Author(s):  
Baboo Y. R. Surnam

Purpose – This paper aims to investigate the corrosion behaviour of carbon steel in the Mauritian atmosphere over a three-year period. Atmospheric corrosion is a serious problem in Mauritius. Design/methodology/approach – Carbon steel samples were exposed outdoors at various sites. Mass loss analysis was performed to determine the corrosion behaviour of the metal over the exposure period. Scanning electron microscopy and Raman tests were performed to investigate the formation of the corrosion products on the carbon steel surface. Findings – It was found that the corrosion loss at two of the sites considered did not vary clearly according to the bilogarithmic law. Time of wetness was found to be a main factor affecting atmospheric corrosion in Mauritius. The corrosivity of the atmosphere was found to lie between categories C3 and C4, according to ISO 9223. Originality/value – The results can be of essential help to the construction industry, especially as steel buildings are becoming very common in Mauritius. Moreover, as Mauritius is a tropical island, the results obtained can be useful in other tropical islands.


1987 ◽  
Vol 18 (3) ◽  
pp. 295-303 ◽  
Author(s):  
D.N. Tsipas ◽  
H. Noguera ◽  
J. Rus

Sign in / Sign up

Export Citation Format

Share Document