Experimental study of the mechanical and corrosion properties of ethyl silicate resin applied on low carbon steel

2021 ◽  
Vol 2 (108) ◽  
pp. 68-74
Author(s):  
M. Ali ◽  
J.H. Mohmmed ◽  
A.A. Zainulabdeen

Purpose: This work aimed at evaluating the properties of the ethyl silicate-based coating that can be applied on low carbon steel. Design/methodology/approach: Two mixture ratio types (2:1, and 3:2) of resin and hardener respectively were used to prepared two specimen models (A and B). Findings: It found that some mechanical properties (tensile, hardness, and impact strength) of ethyl silicate resin were evaluated according to standard criteria. Research limitations/implications: The effect of heat treatments at various temperatures (100, 150, and 200°C) and holding at different times (10, 20 & 30) min on hardness was investigated. Practical implications: Moreover, an open circuit potential corrosion test with a solution of 3.5% Sodium Chloride at room temperature and 60°C was used to determine the corrosion resistance of low carbon steel specimens coated with the two mixture types. Originality/value: The effects of mixture ratios (for resin and hardener) and heat treatment conditions on properties of ethyl silicate-based coating were studied. From obtained results, acceptable values of tensile, hardness, and toughness were recorded. Increasing heat treatment temperature and holding time leads to enhance hardness for both model types. An open circuit potential (OCP) tests show that there is an enhancement of protective properties of ethyl silicate coatings with mixture type B in comparison with type A was achieved. Generally, the results indicate that specimen model B has higher properties as compared with specimen model A.

2010 ◽  
Vol 129-131 ◽  
pp. 312-316
Author(s):  
Wen He Wang ◽  
Jun Yi ◽  
Shi Ming Shen

Corrosion law and mechanism of 20# low-carbon steel in near-neutral soil along Yangtze River in Nanjing are studied by experiments of buried specimens in laboratory. In three kinds of soils, the corrosion features and products are analyzed by EDS and XRD, and the relation of corrosion rates, open-circuit potential and polarization curve with times are tested. The results indicated that corrosion rates changed incessantly along. On the condition of the same times, specimens and different soil samples, the corrosive degree of 1# and 2# specimens are serious, but 3# specimen is serious lightly. The corrosion products are main non-crystalloid, Fe (OH) 3 and Fe2O3.The changing tendency of different times and soils is different, and accordant with that of corrosion rates. The corrosion mechanism is discussed lastly, in near-neutral soils, oxygen is deoxidized and OH- ions are created in cathode area, iron is oxidized and the hydration of Fe2+ ions is created with water from soil in anode area, and Fe2+ are converted into more steady products Fe(OH)3 and Fe2O3.


2013 ◽  
Vol 67 (8) ◽  
Author(s):  
Pravin Deshpande ◽  
Sanket Vathare ◽  
Shashikant Vagge ◽  
Elena Tomšík ◽  
Jaroslav Stejskal

AbstractThe coaxial coating of multi-wall carbon nanotubes (MWCNT) with poly(aniline) (PANI) was synthesised and a paint was prepared containing conducting PANI-MWCNT composite. The corrosion protection performance was assessed by open circuit potential measurements, potentiodynamic polarisation, and electrochemical impedance spectroscopy. The corrosion rate of low-carbon steel coated with 1.5 mass % of PANI-MWCNT-based paint in 3.5 mass % sodium chloride solution was found to be 0.037 mm y−1, about 5.2 times lower than that of unpainted low-carbon steel and 3.6 times lower than that of epoxy painted steel.


2019 ◽  
Vol 44 (1) ◽  
pp. 41-47 ◽  
Author(s):  
Isiaka Oluwole Oladele ◽  
Davies Babatunde Alonge ◽  
Timothy Olakunle Betiku ◽  
Emmanuel Ohiomomo Igbafen ◽  
Benjamin Omotayo Adewuyi

The effect of Post Weld Heat Treatment (PWHT) on the microstructure, mechanical and corrosion properties of low carbon steel have been investigated. The welding process was conducted on butt joint using Manual Metal Arc Welding (MMAW) techniques at a welding voltage of 23 V and welding current of 110 A with the use of E6013 and 3.2 mm diameter as filler material. Heat treatment through full annealing was carried out on the welded low carbon steel. The mechanical properties (hardness, impact toughness and tensile properties) of the AW and PWHT samples were determined. The microstructure of the AW and PWHT samples was characterized by means of an optical microscopy. Corrosion behavior of the sample was studied in3.5 wt.% NaCl environment using potentiodynamic polarization method. The results showed that the AW samples has good combination of mechanical and corrosion properties. The microstructure revealed fine grains of pearlite randomly dispersed in the ferrite for the AW base metal (BM) sample while agglomerated and fine particle of epsilon carbide or cementite randomly dispersed on the ferritic phase of the heat affected zone (HAZ) and weld metal (WM), of the AW, respectively. The PWHT samples shows that the annealing process allow diffusion and growth of the fine grains into partial coarse grains of ferrite and pearlite which did not encourage improvement of the properties. Therefore, it was concluded that the welding parameters put in place during welding of the low carbon steel are optimum for quality weld.


2020 ◽  
Author(s):  
Junhua Dong

<p>In the multi-barrier system of HLW repository, overpack is the first barrier to isolate high-level radioactive nuclides from biosphere, and Low carbon steel has been considered to be a promising candidate material for manufacturing the oberpack due to its good mechanical performance and workability and weldability. However, during thousands of years of geological disposal, the corrosion resistance of low carbon steel and its corrosion evolution behavior are the first element that must be fully understood, because it determines the life cycle of the artificial barrier.</p><p>Conventional studies had suggested that the corrosion of low carbon steel under the deep geological environment was driven by hydrogen evolution reaction (HER) based on that the dissolved oxygen was completely depleted during the long term disposal. However, the residual oxygen content is a critical factor to determine the corrosion mode of cathodic reduction reaction. Thermodynamics data indicated that the initial ferrous corrosion products formed in the deaerated bicarbonate solution can be chemically oxidized into ferric substance by the trace content of dissolved oxygen, and the accumulated FeOOH as a cathodic depolarizer significantly increased the open circuit potential and enhanced the corrosion rate of the low carbon steel. Moreover, chloride and sulfate in the simulated groundwater can reduce the increase of open circuit potential but it still promotes the corrosion of the low carbon steel. As the environments contained aggressive anions and high concentration of dissolved oxygen, low carbon steel was prone to suffer from the localized corrosion and the corrosion rate was obviously increased. By alloying with some contents of Ni and Cu, the corrosion rate of low alloy steel was decreased by an order of magnitude and it was less prone to suffer from the localized corrosion.</p><p>Under the conditions of simulated groundwater with different content of GMZ bentonite,the bentonite colloidal particle layer attached to the surface of low carbon steel showed blocking effect on resisting oxygen diffusion to the steel substrate, which consequently decrease the further oxidation of ferrous to ferric substances and the corrosion rate of low carbon steel. However, the barrier performance of bentonite colloids would be deteriorated due to their coagulation caused by the ferrous ions dissolved from the steel substrate. High content of bentonite was beneficial to maintain and to prolong the stabilization of the barrier system. An equivalent circuit model which correlates with the interfacial structure between electrode substrate and rust and bentonite layer was proposed. The fitting results showed a very good match between the model and experimental data, and the evolution of the results was also in agreement with real changes.</p>


2020 ◽  
Vol 11 (1) ◽  
pp. 1-13
Author(s):  
Roland Tolulope Loto ◽  
Samuel Keme Ororo

AbstractInhibition effect of the synergistic combination of thymus mastichina and illicium verum oil extracts (TMAV) on the corrosion inhibition of low carbon steel in 0.5 M H2SO4 and HCl solution was studied by weight loss analysis, potentiodynamic polarization, open circuit potential measurement, ATF-FTIR spectroscopy, and optical microscopy and macroscopic characterization. Results from weight loss shows TMAV performed more effectively in H2SO4 solution compared to HCl with optimal inhibition efficiency of 81.24% and 68.33%. Effective inhibition performance was observed at all TMAV concentration in H2SO4 compared to HCl where TMAV performed poorly until 5% concentration. The optimal inhibition performances from potentiodynamic polarization are 80.85% and 70.43%. The corresponding corrosion current density and polarization resistance are 7.16 × 105 A/cm2 and 8.01 × 105 A/cm2, and 331.73 and 284 Ω. TMAV exhibited mixed type inhibition effect in both acid solutions, strongly influencing the anodic-cathodic plot configurations with respect to concentration. Open circuit potential plots without TMAV were significantly electronegative compared to the plots at 1% and 5% TMAV concentration which were relative electropositive due to decreased thermodynamic tendency of the carbon steel to corrode. The corresponding plots at 1% and 5% TMAV concentration from HCl solution were thermodynamically unstable with significant active-passive corrosion behaviour. TMAV inhibited through chemisorption adsorption according to Langmuir and Freudlich adsorption isotherms in H2SO4 solution, and Frumkin and Freundlich adsorption isotherms in HCl solution with correlation coefficient values between 0.7 and 0.9. FTIR spectroscopic analysis exposed the functional groups and atomic bonds responsible for corrosion inhibition.


2011 ◽  
Vol 266 ◽  
pp. 237-240 ◽  
Author(s):  
Cheng Jun Liu ◽  
Hong Liang Liu ◽  
Mao Fa Jiang

The effects of the rare earth (RE) element on the microstructure of a hot-rolled low carbon steel (B450NbRE) were investigated under different heat treatment conditions. It was found that the B450NbRE steel with ultrafine grained structure could be successfully prepared with a certain content of RE additive under an appropriate heat treatment temperature between A1 (717°C) and A3 (880°C). The corresponding critical temperature increases with decreasing the RE content. For instance, the critical temperature is 800°C for the RE content of 0.0140 wt.%, but it increases to 850°C as the RE content decreases to 0.0075 wt.%


2019 ◽  
Vol 44 (2) ◽  
pp. 13-19
Author(s):  
Isiaka Oladele ◽  
Davies Alonge ◽  
Timothy Betiku ◽  
Abel Barnabas ◽  
S. Shittu

Experimental investigations were carried out to study the effect of weld joint designs and post weld heat treatment (PWHT) on mechanical and corrosion properties of low carbon steel. Butt, bevel and half-lap joints were produced with a voltage of 20 V and current of 110 A with the use of 3.2 mm diameter electrode E6013. Full annealing was carried out on part of the welded samples in order to consider the possibility of post weld heat treatment for better performance. The mechanical properties (tensile, hardness, and impact toughness) were studied for both the as welded (AW) and PWHT samples as well as the corrosion performance in a natural sea water environment containing 3.5 wt.% NaCl using potentiodynamic polarization method. The microstructure of the AW and PWHT samples of the welded joints with the most promising mechanical and corrosion properties were then characterized by means of an optical microscopy. The results obtained reveals that the bevel joint followed by half lap joint and the butt joint of the as weld samples gave the best combination of the mechanical properties considered. On the other hand, the corrosion properties of the butt joint were superior to that of the bevel and half lap joint, respectively in the PWHT condition as compared to the AW samples. This implies that PWHT improves the corrosion resistance of the welded steel joints.


2018 ◽  
Vol 235 ◽  
pp. 61-70 ◽  
Author(s):  
Yuwei Ye ◽  
Dawei Zhang ◽  
Zhiyong Liu ◽  
Wei Liu ◽  
Haichao Zhao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document