Revision of the Dual-Substituent-Parameter Treatment; Reaction Series with a Donor Reaction Centre

2007 ◽  
Vol 72 (8) ◽  
pp. 1158-1176 ◽  
Author(s):  
Stanislav Böhm ◽  
Otto Exner

The dual-substituent-parameter (DSP) treatment was challenged previously as not generally valid. Just in the fundamental reaction, dissociation of 4-substituted benzoic acids and in similar reactions, DPS does not hold for acceptor substituents because the constant reaction centre is itself an acceptor. In this communication, the reverse case was examined, i.e., a reaction series with a donor reaction centre: basicity and acidity of 4-substituted anilines, and acidity of 4-substituted phenols. The reaction energies were calculated for 19 common substituents at the level B3LYP/6-311+G(d,p)//B3LYP/6-311+G(d,p); the substituents effects were also estimated separately in uncharged molecules and in the ions in terms of isodesmic reaction. DSP is valid and its resonance term is highly significant for molecules with acceptor substituents; donor substituents behave differently and cannot be described by simple resonance constants. Basicity of substituted anilines is more complex since the substituent effects are quite different in the free base and in the protonated form: basicity is controlled by a combination of various effects. It is recommended to use DSP only for acceptor substituents with a donor reaction centre or vice versa; otherwise the accuracy is decreased. All results were obtained with isolated molecules and with resonance constants derived on isolated molecules; however, they retain their validity even with the common constants σR determined from the reactions in solution.

1995 ◽  
Vol 60 (8) ◽  
pp. 1316-1332 ◽  
Author(s):  
Oldřich Pytela ◽  
Aleš Halama

The paper deals with chemometric analysis of the inductive effect. The notion of inductive effect is discussed, and unambiguous definitions are given for the notions of triad: reaction centre-basic skeleton-substituent, and the therewith connected definitions of inductive effect. For a quantitative description of inductive effect 7 types of chemical models were selected including noncyclic compounds, cyclic, and bicyclic compounds, derivatives of quinuclidine, 3-substituted benzoic acids, sulfonamides and pyridines. Altogether 139 sets of experimental data from literature have been used including altogether 1 294 points (9.3 points per set, 5 points at least) reflecting substituent effects of 34 substituents. It has been found that for a standard model the dissociation of substituted bicycloalkanecarboxylic acids only is satisfactory, all the other models reflecting also the mesomeric effects to variable extent (up to 10%). A distinctly different substitution behaviour was observed with 19F and 13C NMR chemical shifts of 4-substituted 1-fluoro- or 1-methylbicyclo[2.2.2]octanes. The earlier suggested model of substituent effects based on different way of transmission of substituent effects (3 classes) has been used for separating the inductive and mesomeric effects: it is mathematically presented as a set of straight lines with the intersection point at the so-called isoeffect substituent constant. Using the modified method of conjugated deviations a chemometric scale has been created for the inductive effect which agrees very well with the conventional scales given in literature; the only differences were observed for F and CH=O substituents (which are overestimated and underestimated, respectively, in literature). In the context given the inductive effect appears as a fundamental quantity forming a basis for quantitative description of other effects transferred by electrons.


2004 ◽  
Vol 69 (5) ◽  
pp. 984-995 ◽  
Author(s):  
Stanislav Böhm ◽  
Otto Exner

Two series of model compounds were devised to follow the attenuation of substituent effects with an interposed methylene group: short-chain aliphatic compounds 1 and derivatives of bicyclo[2.2.2]octane 5. In all compounds, chlorine atom acts as substituent and charged oxygen atom as the functional group; the interaction of both is measured by the reaction energy of the isodesmic reaction calculated at the B3LYP/AUG-cc-pVTZ//B3LYP/6-311+G(d,p) and/or B3LYP/6-311+G(d,p) levels. Attenuation of the substituent inductive effect with the distance is less steep than observed previously in solution. It depends also markedly on the conformation but cannot be reproduced, not even approximately, by the electrostatic formula. Only for simple regular conformations, it can be described approximately by an exponential function with the transmission factor for one methylene group equal to 0.74. The behavior of isolated molecules differs in this case distinctly from the reactivity in solution. Nevertheless, the significance of the two formulas, electrostatic and exponential, is similar in the isolated molecules and in solution. These formulas represent only two different, rather crude mathematical approximations and cannot be given any physical meaning.


1968 ◽  
Vol 21 (6) ◽  
pp. 1541 ◽  
Author(s):  
PD Bolton ◽  
FM Hall ◽  
J Kudrynski

Thermodynamic ionization constants of 3-ethoxyphenol; 3,5-diethoxyphenol, 3,5-dichlorophenol, 3,5-dibromophenol, 3,5-diiodophenol, and 3,5-dinitrophenol have been measured spectrophotometrically within the temperature range 5-60�, and the thermodynamic functions of ionization ΔG25, ΔH25, ΔS25, and ΔCp.25 calculated. These results, in conjunction with others measured previously, indicate that, for this reaction series, substituent effects on the free energies of ionization are precisely additive, and on the entropies of ionization closely additive. An assessment of the results in terms of Hepler's internal/external enthalpy theory is made.


2001 ◽  
Vol 66 (5) ◽  
pp. 770-784 ◽  
Author(s):  
Ingrid Bauerová ◽  
Miroslav Ludwig

Fourteen model phenyl esters of 2-substituted benzoic acids were synthesised. Structures and purity of model compounds were confirmed by 1H and 13C NMR spectroscopy, as well as by HPLC and elemental analysis. Kinetics of base-catalysed hydrolysis of model phenyl esters occurring by the BAc2 mechanism were measured by UV spectrophotometry in 50% (v/v) aqueous dimethyl sulfoxide solutions at 25 °C under pseudo-first-order reaction conditions (c(NaOH) = 0.001-1.0 mol l-1). Linear relation between J-E and log kobs with the slope close to unity was found for all model compounds. Neither one-parameter nor multiparameter Hammett-type description of variability of experimental data obtained for phenyl esters of 2-substituted benzoic acids was found. Two groups (conjugating and non-conjugating) were created by division of ortho-substituents in ortho-position using the AISE theory, based on their interaction with the reaction centre.


1994 ◽  
Vol 59 (9) ◽  
pp. 2005-2021 ◽  
Author(s):  
Oldřich Pytela ◽  
Josef Liška

The dissociation constants of nineteen ortho substituted benzoic acids have been determined in eight organic solvents (methanol, ethanol, acetone, dimethyl sulfoxide, dimethylformamide, acetonitrile, pyridine, 1,2-dichloroethane). The correlation between the σI, σR, and υ constants were unsuccessful due to neglecting the description of intramolecular hydrogen bond effect. The method of conjugated deviations has been applied to the results obtained and to those given in literature for ortho substituted benzoic acids (the dissociation constants, the reaction with diphenyldiazomethane, 33 sets), and values of three types of substituent constants have been determined for 29 substituents. The first of these substituent constants, σoi, describes the electronic effects and was adjusted with the application of the isoparameter relation (σoi as a function of σmi) suggested in previous communications. This constant (after excluding the substituents NHCOCH3 and OCOCH3) correlates very well (R = 0.993) with the σI and σR constants. The second substituent constant, σHGi, describes the interaction of the reaction centre (the oxygen atom of carboxylate anion) with the substituent, and it has non-zero values for the substituents OH, SH, NH2, NHCH3, NHCOCH3, COOH, CONH2, and SO2NH2. The third substituent constant, σSi, describes the steric effects and is not significantly related to any of the known quantities of this type. The set given was tested together with the triad of σI, σR, and υ on the definition set and on a set extended by other 28 sets of processes with ortho substituted compounds. On the whole, the set of substituent constants suggested explains 94.6% of variability of data, whereas only 66.0% are explained with the use of σI, σR, and u constants. Moreover, the tests have shown that the σoi constant is not suitable for interpretations of processes involving direct conjugation between the reaction centre and substituent.


1999 ◽  
Vol 64 (10) ◽  
pp. 1617-1628 ◽  
Author(s):  
Oldřich Pytela ◽  
Ondřej Prusek

Three model compounds have been selected to study the relationship between ortho and para substitution: benzoic acid, phenol, and aniline. Sixteen substituents have been chosen involving also those capable of potential interaction between ortho substituent and the reaction centre. For the combinations given, literature presents 25 pairs of data obtained by measuring a particular process for both the ortho and para substituted derivatives. The missing dissociation constants of 16 ortho substituted benzoic acids in water and ethanol and 16 para substituted benzoic acids in dimethyl sulfoxide and pyridine have been measured by potentiometric titration. The data matrices were submitted to analysis by the methods of projection of latent structures (PLS) and principal component analysis (PCA). It has been found that the substituent effects from ortho and para positions have the same character unless the ortho substituents interact with the reaction centre. Such interactions can change the experimentally found value by as much as 20% of its magnitude. The most significant interaction is a hydrogen bond formation. Out of the three models studied the most extensive interactions are present in benzoic acid, whereas almost none were observed in aniline. The capability of donation of electron pair to a hydrogen bond decreases in the substituent series COCH3 > SO2CH3 > NO2. The capability of donation of proton to a hydrogen bond with electron-pair donor decreases in the substituent series OH > NHCOCH3 ≈ SH > NH2 > SO2NH2.


1995 ◽  
Vol 60 (9) ◽  
pp. 1502-1528 ◽  
Author(s):  
Oldřich Pytela

Alternative interpretation of substituent effects (AISE) starts from the presumption that a substituent only possesses a single property described by a single substituent constant. This property is transmitted to the reaction centre by three different ways depending on the interaction type in the triad reaction centre - basic skeleton - substituent. For interpretation it is substantial whether or not the substituent has p electrons at the atom adjacent to the basic skeleton. If it has none, the substituent belongs to class I and operates only by its basic effect described by the mentioned single substituent constant. Substituents of class II possess a free electron pair at the atom adjacent to the basic skeleton, and those of class III have a multiple bond between the first and the second atoms which is polarized in the direction from the basic skeleton. Substituent effects in class I are described by a substituent constant identical with σI constant. Substituents in classes II and III show additional effects proportional to the same constant. Hence, a separate treatment of substituent effects in the individual classes provides three straight lines intersecting in a common point. Mathematically, the description of substituent effects in this approach is expressed by a family of lines with a single explaining variable. The point of intersection, which is referred to as the iso-effect point, is not identical with the classic standard substituent - hydrogen - but is near to CN substituent. The approach given has the advantage of adopting a single substituent constant whose scale can be adjusted relatively precisely. Its drawback (like in the case of the correlation equations derived from the principle of separation of substituent effects) lies in a more extensive set of substituents needed for a correlation. The AISE principle has been applied to 318 series of experimental data describing effects of 32 substituents in a large variety of chemical models (aliphatic, alicyclic, aromatic, heteroaromatic, with or without direct conjugation between reaction centre and substituent) in both chemical reactions and equilibria. A comparison with two other correlation relations with two and three substituent constants for interpretation of substituent effects based on the principle of separation of the individual substituent effects showed that the closeness of AISE based correlations is comparable with that of the correlation equations currently used. It was somewhat less successful in the models with direct conjugation between reaction centre and substituent but the AISE principle can be used even in these cases.


2009 ◽  
Vol 74 (1) ◽  
pp. 29-42 ◽  
Author(s):  
Vilve Nummert ◽  
Mare Piirsalu ◽  
Signe Vahur ◽  
Oksana Travnikova ◽  
Ilmar A. Koppel

The second-order rate constants k (in dm3 mol–1 s–1) for alkaline hydrolysis of phenyl esters of meta-, para- and ortho-substituted benzoic acids, X-C6H4CO2C6H5, have been measured spectrophotometrically in aqueous 0.5 and 2.25 M Bu4NBr at 25 °C. The substituent effects for para and meta derivatives were described using the Hammett relationship. For the ortho derivatives the Charton equation was used. For ortho-substituted esters two steric scales were involved: the EsB and the Charton steric (υ) constants. When going from pure water to aqueous 0.5 and 2.25 M Bu4NBr, the meta and para polar effects, the ortho inductive and resonance effects in alkaline hydrolysis of phenyl esters of substituted benzoic acids, became stronger nearly to the same extent as found for alkaline hydrolysis of C6H5CO2C6H4-X. The steric term of ortho-substituted esters was almost independent of the media considered. The rate constants of alkaline hydrolysis of ortho-, meta- and para-substituted phenyl benzoates (X-C6H4CO2C6H5, C6H5CO2C6H4-X) and alkyl benzoates, C6H5CO2R, in water, 0.5 and 2.25 M Bu4NBr were correlated with the corresponding IR stretching frequencies of carbonyl group, (ΔνCO)X.


1968 ◽  
Vol 21 (4) ◽  
pp. 939 ◽  
Author(s):  
PD Bolton ◽  
FM Hall

Thermodynamic acidity constants of the meta-methoxyanilinium, meta- chloroanilinium, meta-bromoanilinium, and meta-iodoanilinium ions have been measured spectrophotometrically over the temperature range 5-50� and those of the meta-nitroanilinium ion over the temperature range 5-60�. The thermodynamic functions of ionization, ΔG25, ΔH25, ΔS25, and ΔCp,25, have also been calculated for each ion. For a series of seven meta-substituted anilinium ions the acidity constants show close obedience to the Hammett equation over the temperature range 10-50� with the reaction parameter p being a precise linear function of 1/T. The same reaction series also shows a well-defined isoequilibrium relationship of negative slope.


Sign in / Sign up

Export Citation Format

Share Document