Whole-genome single nucleotide polymorphism-based linkage analysis in spondyloarthritis multiplex families reveals a new susceptibility locus in 13q13

2015 ◽  
Vol 75 (7) ◽  
pp. 1380-1385 ◽  
Author(s):  
Félicie Costantino ◽  
Emmanuel Chaplais ◽  
Tifenn Leturcq ◽  
Roula Said-Nahal ◽  
Ariane Leboime ◽  
...  
2014 ◽  
Vol 80 (7) ◽  
pp. 2125-2132 ◽  
Author(s):  
Narjol Gonzalez-Escalona ◽  
Ruth Timme ◽  
Brian H. Raphael ◽  
Donald Zink ◽  
Shashi K. Sharma

ABSTRACTClostridium botulinumis a genetically diverse Gram-positive bacterium producing extremely potent neurotoxins (botulinum neurotoxins A through G [BoNT/A-G]). The complete genome sequences of three strains harboring only the BoNT/A1 nucleotide sequence are publicly available. Although these strains contain a toxin cluster (HA+OrfX−) associated with hemagglutinin genes, little is known about the genomes of subtype A1 strains (termed HA−OrfX+) that lack hemagglutinin genes in the toxin gene cluster. We sequenced the genomes of three BoNT/A1-producingC. botulinumstrains: two strains with the HA+OrfX−cluster (69A and 32A) and one strain with the HA−OrfX+cluster (CDC297). Whole-genome phylogenic single-nucleotide-polymorphism (SNP) analysis of these strains along with other publicly availableC. botulinumgroup I strains revealed five distinct lineages. Strains 69A and 32A clustered with theC. botulinumtype A1 Hall group, and strain CDC297 clustered with theC. botulinumtype Ba4 strain 657. This study reports the use of whole-genome SNP sequence analysis for discrimination ofC. botulinumgroup I strains and demonstrates the utility of this analysis in quickly differentiatingC. botulinumstrains harboring identical toxin gene subtypes. This analysis further supports previous work showing that strains CDC297 and 657 likely evolved from a common ancestor and independently acquired separate BoNT/A1 toxin gene clusters at distinct genomic locations.


Author(s):  
Xuan Zhou ◽  
Julius van der Werf ◽  
Kristin Carson‐Chahhoud ◽  
Guiyan Ni ◽  
John McGrath ◽  
...  

Background Both genetic and nongenetic factors can predispose individuals to cardiovascular risk. Finding ways to alter these predispositions is important for cardiovascular disease prevention. Methods and Results We used a novel whole‐genome approach to estimate the genetic and nongenetic effects on—and hence their predispositions to—cardiovascular risk and determined whether they vary with respect to lifestyle factors such as physical activity, smoking, alcohol consumption, and dietary intake. We performed analyses on the ARIC (Atherosclerosis Risk in Communities) Study (N=6896–7180) and validated findings using the UKBB (UK Biobank, N=14 076–34 538). Lifestyle modulation was evident for many cardiovascular traits such as body mass index and resting heart rate. For example, alcohol consumption modulated both genetic and nongenetic effects on body mass index, whereas smoking modulated nongenetic effects on heart rate, pulse pressure, and white blood cell count. We also stratified individuals according to estimated genetic and nongenetic effects that are modulated by lifestyle factors and showed distinct phenotype–lifestyle relationships across the stratified groups. Finally, we showed that neglecting lifestyle modulations of cardiovascular traits would on average reduce single nucleotide polymorphism heritability estimates of these traits by a small yet significant amount, primarily owing to the overestimation of residual variance. Conclusions Lifestyle changes are relevant to cardiovascular disease prevention. Individual differences in the genetic and nongenetic effects that are modulated by lifestyle factors, as shown by the stratified group analyses, implies a need for personalized lifestyle interventions. In addition, single nucleotide polymorphism–based heritability of cardiovascular traits without accounting for lifestyle modulations could be underestimated.


Sign in / Sign up

Export Citation Format

Share Document