Platelet-rich plasma usage in orthopaedics and sports medicine

2011 ◽  
Vol 45 (2) ◽  
pp. e2-e2
Author(s):  
D. T. Eglinton
2018 ◽  
Vol 4 (1) ◽  
pp. e000442 ◽  
Author(s):  
Hajer Graiet ◽  
Anna Lokchine ◽  
Pauline Francois ◽  
Melanie Velier ◽  
Fanny Grimaud ◽  
...  

Background/aimsPlatelet-rich plasma (PRP) injections are used in sports medicine and have been the subject of increased clinical interest. However, there have been very few reports of the composition of initial whole blood and the final PRP product. The objective of this study was to provide technical tools to perform a correct characterisation of platelets, leucocytes and red blood cells (RBCs) from whole blood and PRP.MethodsBlood and PRP were obtained from 26 healthy volunteers and prepared according to the varying parameters encountered within PRP process preparation and quantification (harvesting method, anticoagulant used, sampling method, counting method). Concentrations were measured at t=0, t=1, t=6 and t=24 hours.ResultsSampling of blood in Eppendorf tubes significantly decreased platelet concentration over time, whereas sampling in Microvette EDTA-coated tube kept platelet concentration stable until 24 hours. A non-significant difference was observed in platelet counts in PRP with impedance (median (IQR): 521.8 G/L (505.3–524.7)) and fluorescence (591.5 G/L (581.5–595.8)) methods. Other studied parameters did not influence platelet concentrations in blood or PRP samples. Leucocytes and RBC counts were similar whatever the anticoagulant, sampling, harvesting and counting methods used for both blood and PRP samples.ConclusionsSystematic sampling of blood and PRP in EDTA-coated tubes for quality control is recommended. The use of a validated counter for PRP sample should also be taken into account.


2016 ◽  
Vol 45 (4) ◽  
pp. 954-960 ◽  
Author(s):  
Matthias Kieb ◽  
Frank Sander ◽  
Cornelia Prinz ◽  
Stefanie Adam ◽  
Anett Mau-Möller ◽  
...  

Background: Platelet-rich plasma (PRP) is widely used in sports medicine. Available PRP preparations differ in white blood cell, platelet, and growth factor concentrations, making standardized research and clinical application challenging. Purpose: To characterize a newly standardized procedure for pooled PRP that provides defined growth factor concentrations. Study Design: Controlled laboratory study. Methods: A standardized growth factor preparation (lyophilized PRP powder) was prepared using 12 pooled platelet concentrates (PCs) derived from different donors via apheresis. Blood samples and commercially available PRP (SmartPrep-2) served as controls (n = 5). Baseline blood counts were analyzed. Additionally, single PCs (n = 5) were produced by standard platelet apheresis. The concentrations of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), platelet-derived growth factor AB (PDGF-AB), transforming growth factor β1 (TGF-β1), insulin-like growth factor 1 (IGF-1), interleukin (IL)–1α, IL-1β, and IL-1 receptor agonist (IL-1RA) were analyzed by enzyme-linked immunosorbent assay, and statistical analyses were performed using descriptive statistics, mean differences, 95% CIs, and P values (analysis of variance). Results: All growth factor preparation methods showed elevated concentrations of the growth factors VEGF, bFGF, PDGF-AB, and TGF-β1 compared with those of whole blood. Large interindividual differences were found in VEGF and bFGF concentrations. Respective values (mean ± SD in pg/mL) for whole blood, SmartPrep-2, PC, and PRP powder were as follows: VEGF (574 ± 147, 528 ± 233, 1087 ± 535, and 1722), bFGF (198 ± 164, 410 ± 259, 151 ± 99, and 542), PDGF-AB (2394 ± 451, 17,846 ± 3087, 18,461 ± 4455, and 23,023), and TGF-β1 (14,356 ± 4527, 77,533 ± 13,918, 68,582 ± 7388, and 87,495). IGF-1 was found in SmartPrep-2 (1539 ± 348 pg/mL). For PC (2266 ± 485 pg/mL), IGF-1 was measured at the same levels of whole blood (2317 ± 711 pg/mL) but was not detectable in PRP powder. IL-1α was detectable in whole blood (111 ± 35 pg/mL) and SmartPrep-2 (119 ± 44 pg/mL). Conclusion: Problems with PRP such as absent standardization, lack of consistency among studies, and black box dosage could be solved by using characterized PRP powder made by pooling and lyophilizing multiple PCs. The new PRP powder opens up new possibilities for PRP research as well as for the treatment of patients. Clinical Relevance: The preparation of pooled PRP by means of lyophilization may allow physicians to apply a defined amount of growth factors by using a defined amount of PRP powder. Moreover, PRP powder as a dry substance with no need for centrifugation could become ubiquitously available, thus saving time and staff resources in clinical practice. However, before transferring the results of this basic science study to clinical application, regulatory issues have to be cleared.


Author(s):  
James H-C. Wang

Tendon injuries, including acute tendon injuries and tendinopathy, are common in both occupational and athletic settings. However, current treatments for tendon injury are largely ineffective, as they cannot restore normal structure and function to injured tendons. This challenge mainly stems from our incomplete understanding of tendon cell properties and responses to biomechanical and biochemical environments surrounding the cells. In recent years, however, significant progress has been made on two fronts. First, tendon stem cells (TSCs) have been recently identified. The tendon-specific stem cells can self-renew and posses multi-differentiation potential and as such, may be used to repair injured tendons more effectively. Second, platelet-rich plasma (PRP) has now been widely used in orthopaedics and sports medicine to treat injured tendons. In this presentation, I will present data on TSCs, in terms of their differential properties with respect to tenocytes and their differential mechano-responses when subjected to small and large mechanical loading conditions. I will also discuss the basic scientific studies on PRP regarding its effects on TSCs, particularly on their differentiation, which is a critical issue related to the safety and efficacy of PRP treatment in clinics (Fig. 1).


2011 ◽  
Vol 39 (3) ◽  
pp. 94-99 ◽  
Author(s):  
Eric D. Bava ◽  
F. Alan Barber

2014 ◽  
Vol 28 (01) ◽  
pp. 051-054 ◽  
Author(s):  
Stefano Fiorentino ◽  
Alice Roffi ◽  
Giuseppe Filardo ◽  
Maurilio Marcacci ◽  
Elizaveta Kon

2012 ◽  
Vol 13 (7) ◽  
pp. 1185-1195 ◽  
Author(s):  
Allan Mishra ◽  
Kimberly Harmon ◽  
James Woodall ◽  
Amy Vieira

Sign in / Sign up

Export Citation Format

Share Document