scholarly journals Nicorandil attenuates high glucose-induced insulin resistance by suppressing oxidative stress-mediated ER stress PERK signaling pathway

2021 ◽  
Vol 9 (1) ◽  
pp. e001884
Author(s):  
Zhongwei Liu ◽  
Haitao Zhu ◽  
Chunhui He ◽  
Ting He ◽  
Shuo Pan ◽  
...  

IntroductionGlucose-induced insulin resistance is a typical character of diabetes. Nicorandil is now widely used in ischemic heart disease. Nicorandil shows protective effects against oxidative and endoplasmic reticulum (ER) stress, which are involved in insulin resistance. Here, we investigated mechanisms of nicorandil’s novel pharmacological activity on insulin resistance in diabetes.Research design and methodsNicorandil was administrated to streptozotocin-induced animals with diabetes and high glucose exposed skeletal muscle cells. Insulin resistance and glucose tolerance were evaluated. Molecular mechanisms concerning oxidative stress, ER stress signaling activation and glucose uptake were assessed.ResultsNicorandil attenuated high glucose-induced insulin resistance without affecting fasting blood glucose and glucose tolerance in whole body and skeletal muscle in rats with diabetes. Nicorandil treatment suppressed protein kinase C/nicotinamide adenine dinucleotide phosphate oxidases system activities by reducing cytoplasmic free calcium level in skeletal muscle cells exposed to high glucose. As a result, the oxidative stress-mediated ER stress protein kinase RNA-like endoplasmic reticulum kinase (PERK)/eukaryotic initiation factor 2α/activating transcription factor 4/CEBP homologous protein/tribbles homolog (TRB)3 signaling pathway activation was inhibited. Nicorandil downregulated expression of TRB3 and thus facilitated Akt phosphorylation in response to insulin stimulation, leading to glucose transporter4 plasma membrane translocation which promoted glucose uptake capability of skeletal muscle cells.ConclusionsBy reducing cytoplasmic calcium, nicorandil alleviated high glucose-induced insulin resistance by inhibiting oxidative stress-mediated ER stress PERK pathway.

2020 ◽  
Author(s):  
Yangxue Li ◽  
Tingting Han ◽  
Shuang Zheng ◽  
Xingxing Ren ◽  
Yaomin Hu

Abstract Background The benefits of fenofibrate (FB), a peroxisome proliferator-activated receptor-a agonist, against hyperlipidemia have been established. We investigated the effect of fenofibrate on insulin resistance of lipoprotein lipase knockout heterozygous (LPL+/-) mice, which represent inherited hypertriglyceridemia and impaired glucose tolerance. Methods Male LPL+/- mice were treated with FB (50 mg/kg, once daily) via gavage for 8 weeks. Plasma lipid, glucose tolerance test, systemic insulin sensitivity, insulin signaling of tissues, genes and proteins related to endoplasmic reticulum (ER) stress and oxidative stress were analyzed. Results Body weight of 40-week LPL+/- with FB were reduced by 30.3% (P<0.05), while the differences of 16- and 28-week LPL+/- with FB were not significant (P>0.05). FB improved the lipid profile of both 28 and 40-week LPL+/- (P<0.001 for both), while that of 16-week LPL+/- mice with FB was unaltered (P>0.05). Glucose tolerance of 40-week LPL+/- were improved by FB (P<0.05), while that of 16- and 28-week LPL+/- with FB kept unaltered (P>0.05). Fasting insulin of 40-week LPL +/- were improved by FB (P<0.05), thus HOMA-IR of 40-week LPL+/- was declined (P<0.05). HOMA-IR of 16- and 28-week LPL+/- with FB had no change. Insulin-stimulated phosphorylated Akt (Ser473) in liver and skeletal muscle of 28-week LPL+/- was enhanced by FB (P < 0.001 and P<0.05 respectively). ER stress biomarkers were detected decreased in liver of 16- to 40-week LPL+/- with FB whereas that in muscle of LPL+/- with FB unchanged. Reduced reactive oxygen species (ROS) levels and augmented mRNA expression of superoxide dismutase (SOD) and catalase (CAT) in skeletal muscle of 28- and 40-week LPL+/- mice with FB were observed. There was no significance on ROS levels and mRNA of SOD and CAT in liver between LPL+/- mice with and without FB. Conclusions Fenofibrate improved lipid profile, glucose tolerance, systemic and tissue-specific insulin resistance of LPL knockout heterozygous mice. This may be associated with alleviated endoplasmic reticulum stress in liver and reduced oxidative stress in muscle.


2017 ◽  
Vol 59 (4) ◽  
pp. 339-350 ◽  
Author(s):  
Penny Ahlstrom ◽  
Esther Rai ◽  
Suharto Chakma ◽  
Hee Ho Cho ◽  
Palanivel Rengasamy ◽  
...  

Skeletal muscle insulin resistance is known to play an important role in the pathogenesis of diabetes, and one potential causative cellular mechanism is endoplasmic reticulum (ER) stress. Adiponectin mediates anti-diabetic effects via direct metabolic actions and by improving insulin sensitivity, and we recently demonstrated an important role in stimulation of autophagy by adiponectin. However, there is limited knowledge on crosstalk between autophagy and ER stress in skeletal muscle and in particular how they are regulated by adiponectin. Here, we utilized the model of high insulin/glucose (HIHG)-induced insulin resistance, determined by measuring Akt phosphorylation (T308 and S473) and glucose uptake in L6 skeletal muscle cells. HIHG reduced autophagic flux measured by LC3 and p62 Western blotting and tandem fluorescent RFP/GFP-LC3 immunofluorescence (IF). HIHG also induced ER stress assessed by thioflavin T/KDEL IF, pIRE1, pPERK, peIF2α and ATF6 Western blotting and induction of a GRP78-mCherry reporter. Induction of autophagy by adiponectin or rapamycin attenuated HIHG-induced ER stress and improved insulin sensitivity. The functional significance of enhanced autophagy was validated by demonstrating a lack of improved insulin sensitivity in response to adiponectin in autophagy-deficient cells generated by overexpression of dominant negative mutant of Atg5. In summary, adiponectin-induced autophagy in skeletal muscle cells alleviated HIHG-induced ER stress and insulin resistance.


2015 ◽  
Vol 240 (5) ◽  
pp. 557-565 ◽  
Author(s):  
Hao-Hao Zhang ◽  
Xiao-Jun Ma ◽  
Li-Na Wu ◽  
Yan-Yan Zhao ◽  
Peng-Yu Zhang ◽  
...  

Diabetologia ◽  
2014 ◽  
Vol 57 (10) ◽  
pp. 2126-2135 ◽  
Author(s):  
Laia Salvadó ◽  
Emma Barroso ◽  
Anna Maria Gómez-Foix ◽  
Xavier Palomer ◽  
Liliane Michalik ◽  
...  

Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 1912-P ◽  
Author(s):  
KWANWOO LEE ◽  
RIHUA CUI ◽  
DAE JUNG KIM ◽  
SUNGE CHOI ◽  
WHA JOUNG LEE ◽  
...  

2008 ◽  
Vol 29 (1) ◽  
pp. 20-30 ◽  
Author(s):  
Sung Soo Chung ◽  
Min Kim ◽  
Byoung-Soo Youn ◽  
Nam Seok Lee ◽  
Ji Woo Park ◽  
...  

ABSTRACT Oxidative stress plays an important role in the pathogenesis of insulin resistance and type 2 diabetes mellitus and in diabetic vascular complications. Thiazolidinediones (TZDs), a class of peroxisome proliferator-activated receptor γ (PPARγ) agonists, improve insulin sensitivity and are currently used for the treatment of type 2 diabetes mellitus. Here, we show that TZD prevents oxidative stress-induced insulin resistance in human skeletal muscle cells, as indicated by the increase in insulin-stimulated glucose uptake and insulin signaling. Importantly, TZD-mediated activation of PPARγ induces gene expression of glutathione peroxidase 3 (GPx3), which reduces extracellular H2O2 levels causing insulin resistance in skeletal muscle cells. Inhibition of GPx3 expression prevents the antioxidant effects of TZDs on insulin action in oxidative stress-induced insulin-resistant cells, suggesting that GPx3 is required for the regulation of PPARγ-mediated antioxidant effects. Furthermore, reduced plasma GPx3 levels were found in patients with type 2 diabetes mellitus and in db/db/DIO mice. Collectively, these results suggest that the antioxidant effect of PPARγ is exclusively mediated by GPx3 and further imply that GPx3 may be a therapeutic target for insulin resistance and diabetes mellitus.


Sign in / Sign up

Export Citation Format

Share Document