Fenofibrate Ameliorates Insulin Resistance of Lipoprotein Lipase Knockout Heterozygous Mice
Abstract Background The benefits of fenofibrate (FB), a peroxisome proliferator-activated receptor-a agonist, against hyperlipidemia have been established. We investigated the effect of fenofibrate on insulin resistance of lipoprotein lipase knockout heterozygous (LPL+/-) mice, which represent inherited hypertriglyceridemia and impaired glucose tolerance. Methods Male LPL+/- mice were treated with FB (50 mg/kg, once daily) via gavage for 8 weeks. Plasma lipid, glucose tolerance test, systemic insulin sensitivity, insulin signaling of tissues, genes and proteins related to endoplasmic reticulum (ER) stress and oxidative stress were analyzed. Results Body weight of 40-week LPL+/- with FB were reduced by 30.3% (P<0.05), while the differences of 16- and 28-week LPL+/- with FB were not significant (P>0.05). FB improved the lipid profile of both 28 and 40-week LPL+/- (P<0.001 for both), while that of 16-week LPL+/- mice with FB was unaltered (P>0.05). Glucose tolerance of 40-week LPL+/- were improved by FB (P<0.05), while that of 16- and 28-week LPL+/- with FB kept unaltered (P>0.05). Fasting insulin of 40-week LPL +/- were improved by FB (P<0.05), thus HOMA-IR of 40-week LPL+/- was declined (P<0.05). HOMA-IR of 16- and 28-week LPL+/- with FB had no change. Insulin-stimulated phosphorylated Akt (Ser473) in liver and skeletal muscle of 28-week LPL+/- was enhanced by FB (P < 0.001 and P<0.05 respectively). ER stress biomarkers were detected decreased in liver of 16- to 40-week LPL+/- with FB whereas that in muscle of LPL+/- with FB unchanged. Reduced reactive oxygen species (ROS) levels and augmented mRNA expression of superoxide dismutase (SOD) and catalase (CAT) in skeletal muscle of 28- and 40-week LPL+/- mice with FB were observed. There was no significance on ROS levels and mRNA of SOD and CAT in liver between LPL+/- mice with and without FB. Conclusions Fenofibrate improved lipid profile, glucose tolerance, systemic and tissue-specific insulin resistance of LPL knockout heterozygous mice. This may be associated with alleviated endoplasmic reticulum stress in liver and reduced oxidative stress in muscle.