scholarly journals PO-491 Single-cell phenotypic profiling of breast cancerpatient-derived tumour xenografts using mass cytometry

Author(s):  
D Georgopoulou ◽  
M Callari ◽  
A Martin ◽  
OM Rueda ◽  
W Greenwood ◽  
...  
2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Christos Nikolaou ◽  
Kerstin Muehle ◽  
Stephan Schlickeiser ◽  
Alberto Sada Japp ◽  
Nadine Matzmohr ◽  
...  

An amendment to this paper has been published and can be accessed via the original article.


2018 ◽  
Vol 22 (1) ◽  
pp. 78-90 ◽  
Author(s):  
Chotima Böttcher ◽  
◽  
Stephan Schlickeiser ◽  
Marjolein A. M. Sneeboer ◽  
Desiree Kunkel ◽  
...  

2021 ◽  
Vol 42 (Supplement_1) ◽  
Author(s):  
D Bongiovanni ◽  
M Klug ◽  
O Lazareva ◽  
K Kirmes ◽  
M Biasi ◽  
...  

Abstract Background Reticulated platelets (RPs) are young, hyper-reactive thrombocytes that contain more RNA compared with mature platelets (MPs). The measurement of RPs level in peripheral blood with point-of-care systems is fast, reproducible, and inexpensive. Elevated RPs in peripheral blood predict adverse events in patients with acute and chronic coronary syndrome through unknown mechanisms. Preliminary transcriptome analyses reported an enrichment of pro-thrombotic transcripts. However, proteomic analyses are not available, and the biological features of RPs are largely unknown. Purpose We aimed to perform the largest proteomic characterization of RPs using mass cytometry with single-cell resolution in patients with chronic coronary syndrome (CCS) undergoing dual antiplatelet therapy (DAPT). Methods Thrombocytes from peripheral blood of CCS patients were isolated, prepared for mass cytometry (CyTOF) and stained with a custom-made CyTOF-panel of 20 antibodies targeting important transmembrane proteins (anti-CD9, anti-CD29, anti-CD31, anti-CD36-, anti-CD40, anti-CD41, anti-CD42a, anti-CD42b-, anti-CD47, anti-CD61, anti-CD62P-, anti-CD63, anti-CD69, anti-CD107a, anti-CD154, anti-GPVI, antiGPIIb/GPIIIa complex, anti-Par1, anti-PEAR-1 and the negative control anti-CD3 coupled with different metal isotopes). Two samples were prepared from each donor: one baseline sample (non-stimulated platelets) and one sample stimulated with 10 μM thrombin receptor-activating peptide (TRAP). According to previous experiences and common practice, we detected RPs and MPs based on their RNA content. We analyzed the results with a custom bioinformatic pipeline. Results 13 patients with CCS on DAPT were included in this study. Mass cytometry highlighted an expression heterogeneity of relevant transmembrane proteins in thrombocytes of CCS patients (Figure 1A-B colored according to expression level: from blue-low to red-high). CyTOF detected an upregulation of important transmembrane receptors in RPs compared to MPs in quiescent platelets: GPVI (p<0.0001), PAR-1 (p<0.0001), GPIX (p<0.0001), and GPIbα (p<0.0001, Figure 1C). After TRAP-stimulation, RPs expressed higher levels of the activation markers P-Selectin (p=0.0016) and LAMP-3 (CD63, p<0.0001) compared to MPs confirming RPs hyperactivity (Figure 1D). Conclusion We here describe the first biological proteomic characterization with single-cell resolution of RPs biology in CCS patients. The upregulation of the activation markers P-Selectin and LAMP-3 as well as of specific transmembrane proteins as the collagen receptor GPVI and the thrombin receptor PAR-1 in patients treated with DAPT (schematic overview in Figure 2) provides the first solid biomolecular explanation of RPs hyper-reactivity and involvement in cardiovascular disease. Moreover, these results offer unexplored therapeutic targets to tailor antiplatelet therapy based on platelet protein expression in patients with elevated RPs FUNDunding Acknowledgement Type of funding sources: Public grant(s) – National budget only. Main funding source(s): German Center for Cardiovascular Research (DZHK) Figure 1. Platelet expression Figure 2. Schematic overview


2019 ◽  
Vol 200 ◽  
pp. 24-30 ◽  
Author(s):  
Min Sun Shin ◽  
Kristina Yim ◽  
Kevin Moon ◽  
Hong-Jai Park ◽  
Subhasis Mohanty ◽  
...  

Neuroforum ◽  
2019 ◽  
Vol 25 (3) ◽  
pp. 195-204
Author(s):  
Chotima Böttcher ◽  
Roman Sankowski ◽  
Josef Priller ◽  
Marco Prinz

Abstract The cellular composition of the central nervous system (CNS) is highly complex and dynamic. Regulation of this complexity is increasingly recognized to be spatially and temporally dependent during development, homeostasis and disease. Context-dependent cellular heterogeneity was shown for neuroectodermal cells as well as the myeloid compartment of the CNS. The brain myeloid compartment comprises microglia and other CNS-associated macrophages. These are brain-resident cells with critical roles in brain development, maintenance, and immune responses during states of disease. Profiling of CNS myeloid cell heterogeneity has been greatly facilitated in the past years by development of high-throughput technologies for single-cell analysis. This review summarizes current insights into heterogeneity of the CNS myeloid cell population determined by single-cell RNA sequencing and mass cytometry. The results offer invaluable insights into CNS biology and will facilitate the development of therapies for neurodegenerative and neuroinflammatory pathologies.


2020 ◽  
Vol 30 (6) ◽  
pp. 1178-1191 ◽  
Author(s):  
Camila Fernández‐Zapata ◽  
Julia K. H. Leman ◽  
Josef Priller ◽  
Chotima Böttcher

Author(s):  
Felix J. Hartmann ◽  
Erin F. Simonds ◽  
Nora Vivanco ◽  
Trevor Bruce ◽  
Luciene Borges ◽  
...  
Keyword(s):  

2019 ◽  
Vol 35 (20) ◽  
pp. 4063-4071 ◽  
Author(s):  
Tamim Abdelaal ◽  
Thomas Höllt ◽  
Vincent van Unen ◽  
Boudewijn P F Lelieveldt ◽  
Frits Koning ◽  
...  

Abstract Motivation High-dimensional mass cytometry (CyTOF) allows the simultaneous measurement of multiple cellular markers at single-cell level, providing a comprehensive view of cell compositions. However, the power of CyTOF to explore the full heterogeneity of a biological sample at the single-cell level is currently limited by the number of markers measured simultaneously on a single panel. Results To extend the number of markers per cell, we propose an in silico method to integrate CyTOF datasets measured using multiple panels that share a set of markers. Additionally, we present an approach to select the most informative markers from an existing CyTOF dataset to be used as a shared marker set between panels. We demonstrate the feasibility of our methods by evaluating the quality of clustering and neighborhood preservation of the integrated dataset, on two public CyTOF datasets. We illustrate that by computationally extending the number of markers we can further untangle the heterogeneity of mass cytometry data, including rare cell-population detection. Availability and implementation Implementation is available on GitHub (https://github.com/tabdelaal/CyTOFmerge). Supplementary information Supplementary data are available at Bioinformatics online.


Sign in / Sign up

Export Citation Format

Share Document