scholarly journals Dissecting alterations in human CD8+ T cells with aging by high-dimensional single cell mass cytometry

2019 ◽  
Vol 200 ◽  
pp. 24-30 ◽  
Author(s):  
Min Sun Shin ◽  
Kristina Yim ◽  
Kevin Moon ◽  
Hong-Jai Park ◽  
Subhasis Mohanty ◽  
...  
2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A822-A822
Author(s):  
Sri Krishna ◽  
Frank Lowery ◽  
Amy Copeland ◽  
Stephanie Goff ◽  
Grégoire Altan-Bonnet ◽  
...  

BackgroundAdoptive T cell therapy (ACT) utilizing ex vivo-expanded autologous tumor infiltrating lymphocytes (TILs) can result in complete regression of human cancers.1 Successful immunotherapy is influenced by several tumor-intrinsic factors.2 3 Recently, T cell-intrinsic factors have been associated with immunotherapy response in murine and human studies.4 5 Analyses of tumor-reactive TILs have concluded that anti-tumor neoantigen-specific TILs are enriched in subsets defined by the expression of PD-1 or CD39.6 7 Thus, there is a lack of consensus regarding the tumor-reactive TIL subset that is directly responsible for successful immunotherapies such as ICB and ACT. In this study, we attempted to define the fitness landscape of TIL-enriched infusion products to specifically understand its phenotypic impact on human immunotherapy responses.MethodsWe compared the phenotypic differences that could distinguish bulk ACT infusion products (I.P.) administered to patients who had complete response to therapy (complete responders, CRs, N = 24) from those whose disease progressed following ACT (non-responders, NRs, N = 30) by high dimensional single cell protein and RNA analysis of the I.P. We further analyzed the phenotypic states of anti-tumor neoantigen specific TILs from patient I.P (N = 26) by flow cytometry and single cell transcriptomics.ResultsWe identified two CD8+ TIL populations associated with clinical outcomes: a memory-progenitor CD39-negative stem-like TIL (CD39-CD69-) in the I.P. associated with complete cancer regression (overall survival, P < 0.0001, HR = 0.217, 95% CI 0.101 to 0.463) and TIL persistence, and a terminally differentiated CD39-positive TIL (CD39+CD69+) population associated with poor TIL persistence post-treatment. Although the majority (>65%) of neoantigen-reactive TILs in both responders and non-responders to ACT were found in the differentiated CD39+ state, CR infusion products also contained a pool of CD39- stem-like neoantigen-specific TILs (median = 8.8%) that was lacking in NR infusion products (median = 23.6%, P = 1.86 x 10-5). Tumor-reactive stem-like T cells were capable of self-renewal, expansion, and persistence, and mediated superior anti-tumor response in vivo.ConclusionsOur results support the hypothesis that responders to ACT received infusion products containing a pool of stem-like neoantigen-specific TILs that are able to undergo prolific expansion, give rise to differentiated subsets, and mediate long-term tumor control and T cell persistence, in line with recent murine ICB studies mediated by TCF+ progenitor T cells.4 5 Our data also suggest that TIL subsets mediating ACT-response (stem-like CD39-) might be distinct from TIL subsets enriched for anti-tumor-reactivity (terminally differentiated CD39+) in human TIL.6 7AcknowledgementsWe thank Don White for curating the melanoma patient cohort, and J. Panopoulos (Flowjo) for helpful discussions on high-dimensional analysis, and NCI Surgery Branch members for helpful insights and suggestions. S. Krishna acknowledges funding support from NCI Director’s Innovation Award from the National Cancer Institute.Trial RegistrationNAEthics ApprovalThe study was approved by NCI’s IRB ethics board.ReferencesGoff SL, et al. Randomized, prospective evaluation comparing intensity of lymphodepletion before adoptive transfer of tumor-infiltrating lymphocytes for patients with metastatic melanoma. J Clin Oncol 2016;34:2389–2397.Snyder A, et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med 2014;371:2189–2199.McGranahan N, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 2016;351:1463–1469.Sade-Feldman M, et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell 2019;176:404.Miller BC, et al. Subsets of exhausted CD8 T cells differentially mediate tumor control and respond to checkpoint blockade. Nat. Immunol 2019;20:326–336.Simoni Y, et al. Bystander CD8 T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature 2018;557:575–579.Gros A, et al. PD-1 identifies the patient-specific CD8+ tumor-reactive repertoire infiltrating human tumors. J Clin Invest 2014;124:2246–2259.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Christos Nikolaou ◽  
Kerstin Muehle ◽  
Stephan Schlickeiser ◽  
Alberto Sada Japp ◽  
Nadine Matzmohr ◽  
...  

An amendment to this paper has been published and can be accessed via the original article.


2021 ◽  
Author(s):  
Ke-Yue Ma ◽  
Alexandra A. Schonnesen ◽  
Chenfeng He ◽  
Amanda Y. Xia ◽  
Eric Sun ◽  
...  

2019 ◽  
Vol 37 (3) ◽  
pp. 259-266 ◽  
Author(s):  
Zinaida Good ◽  
Luciene Borges ◽  
Nora Vivanco Gonzalez ◽  
Bita Sahaf ◽  
Nikolay Samusik ◽  
...  

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1859-1859 ◽  
Author(s):  
Yongxian Hu ◽  
Zhang Yanlei ◽  
Guoqing Wei ◽  
Chang alex Hong ◽  
He Huang

Background BCMA CAR-T cells have demonstrated substantial clinical activity against relapsed/refractory multiple myeloma (RRMM). In different clinical trials, the overall response rate (ORR) varied from 50% to 100%. Complete remission (CR) rate varied from 20% to 80%. Here we developed a BCMA CAR-T cell product manufactured via lentiviral vector-mediated transduction of activated T cells to express a second-generation CAR with 4-1BB costimulatory domain and evaluated the efficacy and safety, moreover, dynamics of immune cell subsets using single-cell mass cytometry during treatment were analyzed. Methods Our trial (ChiCTR1800017404) is a phase 1, single-arm, open-label single center study to evaluate the safety and efficacy of autologous BCMA CAR-T treatment for RRMM. Patients were subjected to a lymphodepleting regimen with Flu and Cy prior to CAR-T infusion. BCMA CAR-T cells were administered as a single infusion at a median dose of 3.5 (1 to 6) ×106/kg. MM response assessment was conducted according to the International Uniform Response Criteria. Cytokine-release syndrome (CRS) was graded as Lee DW et al described (Blood.2014;124(2):188-195). Phenotypic analysis of peripheral blood mononuclear cells (PBMCs), frozen BCMA CAR-T aliquots, phenotype and in vivo kinetics of immune cell subsets after CAR-T infusion were performed by single-cell mass cytometry. Results As of the data cut-off date (August 1st, 2019), 33 patients, median age 62.5 (49 to 75) years old were infused with BCMA CAR-T cells. The median observation period is 8.0 (0.7 to 18) months. ORR was 100% (The patient who died of infection at 20 days after CAR-T infusion were excluded). All the 32 patients achieved MRD negative in bone marrow by flow cytometry in 2 weeks after CAR-T infusion. Partial response (4 PR, 12.1%), VGPR (7 VGPR, 21.2%), and complete response (21 CR, 63.6%) within 12 weeks post CAR-T infusion were achieved. Durable responses from 4 weeks towards the data cut-off date were found in 28/33 patients (84.8%) (Figure 1a). All patients had detectable CAR-T expansion by flow cytometry from Day 3 post CAR-T cell infusion. The peak CAR-T cell expansion in CD3+ lymphocytes of peripheral blood (PB) varied from 35% to 95% with a median percentage of 82.9%. CRS was reported in all the 33 patients, including 4 with Grade 1, 13 with Grade 2 and 16 with Grade 3. During follow-up, 1-year progression-free survival (PFS) was 70.7% (Figure 1b) and overall survival (OS) was 71.7% (Figure 1c). Multivariate analysis of patients with PR and patients with CR+VGPR revealed that factors including extramedullary infiltration, age>60 years old, high-risk cytogenetics, late stage and CAR-T cell dose were not associated with clinical response (P>0.05). Single-cell mass cytometry revealed that the frequency of total T cells, CD8+ T cells, NK cells and CD3+CD56+ NKT cells in PB was not associated with BCM CAR-T expansion or clinical response. CD8+ Granzyme B+ Ki-67+ CAR-T cells expanded prominently in CRS period. As serum cytokines increased during CRS, non-CAR-T immune cell subsets including PD1+ NK cells, CD8+ Ki-67+ ICOS+ T cells expanded dominantly implying that non-CAR-T cells were also activated after CAR-T treatment. After CRS, stem cell like memory CAR-T cells (CD45RO+ CCR7- CD28- CD95+) remain the main subtype of CAR-T cells (Figure 1d). Conclusions Our data showed BCMA CAR-T treatment is safe with prominent efficacy which can overcome the traditional high-risk factors. We also observed high expansion level and long-term persistence of BCMA CAR-T cells contribute to potent anti-myeloma activity. Stem cell like memory CAR-T cells might be associated with long-term persistence of BCMA CAR-T cells. These initial data provide strong evidence to support the further development of this anti-myeloma cellular immunotherapy. Figure 1. Disclosures No relevant conflicts of interest to declare.


2014 ◽  
Vol 133 (2) ◽  
pp. AB244
Author(s):  
Elena Hsieh ◽  
William O'Gorman ◽  
Erica Savig ◽  
Pier Federico Gherardini ◽  
Mark Davis ◽  
...  

Immunity ◽  
2021 ◽  
Vol 54 (4) ◽  
pp. 829-844.e5 ◽  
Author(s):  
Lauren S. Levine ◽  
Kamir J. Hiam-Galvez ◽  
Diana M. Marquez ◽  
Iliana Tenvooren ◽  
Matthew Z. Madden ◽  
...  

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Christos Nikolaou ◽  
Kerstin Muehle ◽  
Stephan Schlickeiser ◽  
Alberto Sada Japp ◽  
Nadine Matzmohr ◽  
...  

Abstract Background Immune ageing is a result of repetitive microbial challenges along with cell intrinsic or systemic changes occurring during ageing. Mice under ‘specific-pathogen-free’ (SPF) conditions are frequently used to assess immune ageing in long-term experiments. However, physiological pathogenic challenges are reduced in SPF mice. The question arises to what extent murine experiments performed under SPF conditions are suited to analyze immune ageing in mice and serve as models for human immune ageing. Our previous comparisons of same aged mice with different microbial exposures, unambiguously identified distinct clusters of immune cells characteristic for numerous previous pathogen encounters in particular in pet shop mice. Results We here performed single cell mass cytometry assessing splenic as secondary and bone marrow as primary lymphoid organ-derived leukocytes isolated from young versus aged SPF mice in order to delineate alterations of the murine hematopoietic system induced during ageing. We then compared immune clusters from young and aged SPF mice to pet shop mice in order to delineate alterations of the murine hematopoietic system induced by physiological pathogenic challenges and those caused by cell intrinsic or systemic changes during ageing. Notably, distinct immune signatures were similarly altered in both pet shop and aged SPF mice in comparison to young SPF mice, including increased frequencies of memory T lymphocytes, effector-cytokine producing T cells, plasma cells and mature NK cells. However, elevated frequencies of CD4+ T cells, total NK cells, granulocytes, pDCs, cDCs and decreased frequencies of naïve B cells were specifically identified only in pet shop mice. In aged SPF mice specifically the frequencies of splenic IgM+ plasma cells, CD8+ T cells and CD4+ CD25+ Treg were increased as compared to pet shop mice and young mice. Conclusions Our study dissects firstly how ageing impacts both innate and adaptive immune cells in primary and secondary lymphoid organs. Secondly, it partly distinguishes murine intrinsic immune ageing alterations from those induced by physiological pathogen challenges highlighting the importance of designing mouse models for their use in preclinical research including vaccines and immunotherapies.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A698-A698
Author(s):  
Todd Bartkowiak ◽  
Sierra Barone ◽  
Madeline Hayes ◽  
Allison Greenplate ◽  
Justine Sinnaeve ◽  
...  

BackgroundGlioblastomas make up more than 60% of adult primary brain tumors and carry a median survival of less than 15 months despite aggressive therapy. Immunotherapy, now standard of care for many peripheral solid tumors, offers an appealing alternative platform that may improve survival outcomes for patients with glioblastoma; however, predictive features that could inform responsiveness to different immunotherapeutic modalities remains to be elucidated. Recent studies have demonstrated that patients whose tumors show radiographic contact with the lateral ventricle have diminished survival outcomes compared to patients whose tumors do not contact the lateral ventricle. While greater immune infiltrate correlates with more favorable outcomes and more effectual responses to immunotherapy, the anti-tumor immune response in the ventricle is unknown. We hypothesized that ventricle contact may provide a uniquely immunosuppressive microenvironment within the brain that promotes tumor growth by suppressing anti-tumor immunity, that may be overcome with appropriate targeting strategies.MethodsPrimary glioblastoma tumors obtained in accordance with the Declaration of Helsinki and with institutional IRB approval (#131870) were disaggregated into single-cell suspensions. Radiographic contact with the LV was identified by MRI imaging and confirmed by a trained neurosurgeon. Multi-dimensional single-cell mass cytometry (CyTOF) then measured >30 immune parameters in thirteen immune subpopulations infiltrating human glioblastomas, including T cells, natural killer cells, B cells, microglia, peripheral macrophages, and myeloid-derived suppressors cells (MDSC). Computational machine-learning pipelines including Citrus, t-SNE, FlowSOM, and MEM identified key differences in the abundance and phenotypes of immune infiltrates.ResultsOn the basis of glioblastoma contact with the ventricle, we computationally identified consequential distinctions in the abundance of T cell, macrophage, and microglia subsets constituting five immunotype signatures among glioblastoma patients. Immunotypes associated with CD69+CD32+CD44+ peripheral macrophages and PD-1+TIGIT+ CD8 T cells correlated with ventricle contact, whereas immunotypes associated with enriched γδ T cells, B, NK cell, and tissue-resident microglial cells correlated with tumors distal to the ventricle. Further, immune infiltration in the tumor microenvironment correlated with patient outcome, with higher lymphocyte infiltrates correlating with more favorable outcomes, and immune exhaustion correlating with less favorable outcomes.ConclusionsSingle-cell mass cytometry in conjunction with the machine learning tools identified key differences in immune cell abundance between lateral ventricle contacting and non-contacting glioblastomas. These results provide key insights into the immune microenvironment of glioblastomas and elucidate several clinically actionable immunotherapeutic targets that may be used to optimize treatment strategies for glioblastomas based on ventricle contact status.Ethics ApprovalThis study was approved by Vanderbilt University’s Institutional Ethics Board, approval number 131870


2020 ◽  
Author(s):  
David Roumanes ◽  
Michael Fehlings ◽  
Mahesh Yadav ◽  
Alessandra Nardin

Sign in / Sign up

Export Citation Format

Share Document