scholarly journals Proliferation in human gastrointestinal epithelium using bromodeoxyuridine in vivo: data for different sites, proximity to a tumour, and polyposis coli.

Gut ◽  
1992 ◽  
Vol 33 (4) ◽  
pp. 524-529 ◽  
Author(s):  
C S Potten ◽  
M Kellett ◽  
D A Rew ◽  
S A Roberts
Author(s):  
Lila Bazina ◽  
Dimitrios Bitounis ◽  
Xiaoqiong Cao ◽  
Glen M. DeLoid ◽  
Dorsa Parviz ◽  
...  

Background: engineered nanomaterials (ENMs) have already made their way into myriad applications and products across multiple industries.


2016 ◽  
Author(s):  
Δέσποινα Μπουρνελέ

Οι βαλβιδοπάθειες με συχνότητα εμφάνισης 5% επί των ζώντων νεογνών αποτελούν το 20-30% του συνόλου των συγγενών καρδιοπαθειών. Οι καρδιακές βαλβίδες αναπτύσσονται και διαμορφώνονται ταυτόχρονα με το σχηματισμό της καρδιάς και όσο αυτή συστέλλεται. Οι βαλβίδες λειτουργούν καθ’όλη τη διάρκεια της ζωής ενός οργανισμού με σκοπό την παρεμπόδιση της παλίνδρομης ροής του αίματος μεταξύ των καρδιακών κοιλοτήτων. Η ακριβής τους διαμόρφωση είναι σημαντική για την φυσιολογική καρδιακή λειτουργία και είναι αποτέλεσμα της αλληλεπίδρασης της συσταλτικότητας της καρδιάς και της αιμοδυναμικής ροής. Ποικίλα σηματοδοτικά μονοπάτια εμπλέκονται στη μορφοποίηση των καρδιακών βαλβίδων. Ωστόσο, οι μοριακοί μηχανισμοί που διέπουν την ανάπτυξη τους δεν έχουν πλήρως διαλευκανθεί.Το zebrafish αποτελεί ένα ιδανικό πειραματικό μοντέλο για τη μελέτη της ανάπτυξης των καρδιακών βαλβίδων καθώς επιτρέπει τη μη επεμβατική in vivo παρατήρηση της ανάπτυξης του καρδιαγγειακού συστήματος. Επίσης, η καρδιά του, zebrafish έχει την ικανότητα να αναγεννάται σε όλη τη διάρκεια ζωής του ψαριού, προσφέροντας γνώση για την κατανόηση των μηχανισμών που διέπουν την αναγέννηση της ανθρώπινης καρδιάς. Το zebrafish είναι ακόμα ένα πολύτιμο γενετικό εργαλείο για την ταυτοποίηση υποψήφιων γονιδίων για συγγενείς καρδιοπάθειες, είτε μέσω του χαρακτηρισμού μεταλλαγμένων σειρών που έχουν προέλθει από γενετικούς ελέγχους είτε μέσω της φαινοτυπικής παρατήρησης εμβρύων μετά από εφαρμογή μεθόδων γονιδιωματικής τροποποίησης.Στην παρούσα μελέτη πραγματοποιήθηκε η ταυτοποίηση και ο χαρακτηρισμός γονιδίων που εμπλέκονται στην ανάπτυξη και το σχηματισμό των καρδιακών βαλβίδων. Οι μεταλλαγμένες γενετικές σειρές που χρησιμοποιήθηκαν προήλθαν από τυχαία μεταλλαξιγένεση στα πλαίσια ενός ελέγχου πρόσθιας γενετικής για καρδιοαγγειακούς φαινότυπους. Η μεταλλαγμένη σειρά bua εμφανίζει στένωση της βαλβίδας στο σημείο εξώθησης της καρδιάς (outflow tract), με αποτέλεσμα την ελαττωματική ανάπτυξη της κολποκοιλιακής βαλβίδας και την παλινδρόμησή του αίματος μεταξύ κόλπου και κοιλίας. Τα έμβρυα της μεταλλαγμένης σειράς BH εμφανίζουν μικρότερη σε μέγεθος καρδιά και κυρτή ουρά. Παράλληλα, πραγματοποιήθηκε ο χαρακτηρισμός της διαγονιδιακής σειράς Tg(7xTCF-Xla.Siam:nlsmCherry). Πρόκειται για μια νέα διαγονιδιακή σειρά αναφοράς της Wnt/β-κατενίνης, που συμβάλλει στον εντοπισμό της ενεργότητας του σηματοδοτικού μονοπατιού στα κύτταρα του zebrafish. Ο χαρακτηρισμός του διαγονιδίου πραγματοποιήθηκε και στη μεταλλαγμένη σειρά apchu745, στην οποία το σηματοδοτικό μονοπάτι Wnt/β-catenin είναι μόνιμα ενεργοποιημένο. Έμβρυα zebrafish με μεταλλάξεις στο ογκοκατασταλτικό γονίδιο apc (adenomatous polyposis coli) εμφανίζουν ανωμαλίες στην ανάπτυξη της καρδιάς, όπως ελαττωματική καρδιακή συσταλτικότητα, ελαττωματική κάμψη της καρδιάς, καθώς επίσης και υπερπλαστικά καρδιακά επάρματα στις καρδιακές βαλβίδες.Σκοπός της συγκεκριμένης εργασίας ήταν η μελέτη της λειτουργίας των γονιδίων, η ταυτοποίηση νέων σηματοδοτικών μονοπατιών και η διαλεύκανση των μοριακών μηχανισμών που εμπλέκονται στην παθογένεση των συγγενών καρδιοπαθειών. Αρκετά μοναδικά χαρακτηριστικά καθιστούν το zebrafish ένα ελκυστικό πειραματικό μοντέλο, που προσφέρει τη δυνατότητα μοντελοποίησης μεγάλου εύρους ανθρώπινων ασθενειών.


2017 ◽  
Vol 216 (9) ◽  
pp. 2859-2875 ◽  
Author(s):  
M. Angeles Juanes ◽  
Habib Bouguenina ◽  
Julian A. Eskin ◽  
Richa Jaiswal ◽  
Ali Badache ◽  
...  

Cell motility depends on tight coordination between the microtubule (MT) and actin cytoskeletons, but the mechanisms underlying this MT–actin cross talk have remained poorly understood. Here, we show that the tumor suppressor protein adenomatous polyposis coli (APC), which is a known MT-associated protein, directly nucleates actin assembly to promote directed cell migration. By changing only two residues in APC, we generated a separation-of-function mutant, APC (m4), that abolishes actin nucleation activity without affecting MT interactions. Expression of full-length APC carrying the m4 mutation (APC (m4)) rescued cellular defects in MT organization, MT dynamics, and mitochondrial distribution caused by depletion of endogenous APC but failed to restore cell migration. Wild-type APC and APC (m4) localized to focal adhesions (FAs), and APC (m4) was defective in promoting actin assembly at FAs to facilitate MT-induced FA turnover. These results provide the first direct evidence for APC-mediated actin assembly in vivo and establish a role for APC in coordinating MTs and actin at FAs to direct cell migration.


2008 ◽  
Vol 38 (2) ◽  
pp. 138-152 ◽  
Author(s):  
Madelaine M. Rosenberg ◽  
Fang Yang ◽  
Monica Giovanni ◽  
Jesse L. Mohn ◽  
Murali K. Temburni ◽  
...  

mSphere ◽  
2015 ◽  
Vol 1 (1) ◽  
Author(s):  
Coyne G. Drummond ◽  
Cheryl A. Nickerson ◽  
Carolyn B. Coyne

ABSTRACT Coxsackievirus B (CVB), a member of the enterovirus family of RNA viruses, is associated with meningitis, pericarditis, diabetes, dilated cardiomyopathy, and myocarditis, among other pathologies. CVB is transmitted via the fecal-oral route and encounters the epithelium lining the gastrointestinal tract early in infection. The lack of suitable in vivo and in vitro models to study CVB infection of the gastrointestinal epithelium has limited our understanding of the events that surround infection of these specialized cells. Here, we report on the development of a three-dimensional (3-D) organotypic cell culture model of human intestinal epithelial cells that better models the gastrointestinal epithelium in vivo. By applying this 3-D model, which recapitulates many aspects of the gastrointestinal epithelium in vivo, to the study of CVB infection, our work provides a new cell system to model the mechanisms by which CVB infects the intestinal epithelium, which may have a profound impact on CVB pathogenesis. Despite serving as the primary entry portal for coxsackievirus B (CVB), little is known about CVB infection of the intestinal epithelium, owing at least in part to the lack of suitable in vivo models and the inability of cultured cells to recapitulate the complexity and structure associated with the gastrointestinal (GI) tract. Here, we report on the development of a three-dimensional (3-D) organotypic cell culture model of Caco-2 cells to model CVB infection of the gastrointestinal epithelium. We show that Caco-2 cells grown in 3-D using the rotating wall vessel (RWV) bioreactor recapitulate many of the properties of the intestinal epithelium, including the formation of well-developed tight junctions, apical-basolateral polarity, brush borders, and multicellular complexity. In addition, transcriptome analyses using transcriptome sequencing (RNA-Seq) revealed the induction of a number of genes associated with intestinal epithelial differentiation and/or intestinal processes in vivo when Caco-2 cells were cultured in 3-D. Applying this model to CVB infection, we found that although the levels of intracellular virus production were similar in two-dimensional (2-D) and 3-D Caco-2 cell cultures, the release of infectious CVB was enhanced in 3-D cultures at early stages of infection. Unlike CVB, the replication of poliovirus (PV) was significantly reduced in 3-D Caco-2 cell cultures. Collectively, our studies show that Caco-2 cells grown in 3-D using the RWV bioreactor provide a cell culture model that structurally and transcriptionally represents key aspects of cells in the human GI tract and can thus be used to expand our understanding of enterovirus-host interactions in intestinal epithelial cells. IMPORTANCE Coxsackievirus B (CVB), a member of the enterovirus family of RNA viruses, is associated with meningitis, pericarditis, diabetes, dilated cardiomyopathy, and myocarditis, among other pathologies. CVB is transmitted via the fecal-oral route and encounters the epithelium lining the gastrointestinal tract early in infection. The lack of suitable in vivo and in vitro models to study CVB infection of the gastrointestinal epithelium has limited our understanding of the events that surround infection of these specialized cells. Here, we report on the development of a three-dimensional (3-D) organotypic cell culture model of human intestinal epithelial cells that better models the gastrointestinal epithelium in vivo. By applying this 3-D model, which recapitulates many aspects of the gastrointestinal epithelium in vivo, to the study of CVB infection, our work provides a new cell system to model the mechanisms by which CVB infects the intestinal epithelium, which may have a profound impact on CVB pathogenesis. Podcast: A podcast concerning this article is available.


2020 ◽  
Vol 4 (10) ◽  
pp. 2124-2134 ◽  
Author(s):  
Isabelle C. Becker ◽  
Inga Scheller ◽  
Lou M. Wackerbarth ◽  
Sarah Beck ◽  
Tobias Heib ◽  
...  

Abstract Rearrangements of the microtubule (MT) and actin cytoskeleton are pivotal for platelet biogenesis. Hence, defects in actin- or MT-regulatory proteins are associated with platelet disorders in humans and mice. Previous studies in mice revealed that loss of the actin-depolymerizing factor homology (ADF-H) protein Cofilin1 (Cof1) in megakaryocytes (MKs) results in a moderate macrothrombocytopenia but normal MK numbers, whereas deficiency in another ADF-H protein, Twinfilin1 (Twf1), does not affect platelet production or function. However, recent studies in yeast have indicated a critical synergism between Twf1 and Cof1 in the regulation of actin dynamics. We therefore investigated platelet biogenesis and function in mice lacking both Twf1 and Cof1 in the MK lineage. In contrast to single deficiency in either protein, Twf1/Cof1 double deficiency (DKO) resulted in a severe macrothrombocytopenia and dramatically increased MK numbers in bone marrow and spleen. DKO MKs exhibited defective proplatelet formation in vitro and in vivo as well as impaired spreading and altered assembly of podosome-like structures on collagen and fibrinogen in vitro. These defects were associated with aberrant F-actin accumulation and, remarkably, the formation of hyperstable MT, which appears to be caused by dysregulation of the actin- and MT-binding proteins mDia1 and adenomatous polyposis coli. Surprisingly, the mild functional defects described for Cof1-deficient platelets were only slightly aggravated in DKO platelets suggesting that both proteins are largely dispensable for platelet function in the peripheral blood. In summary, these findings reveal critical redundant functions of Cof1 and Twf1 in ensuring balanced actin/microtubule crosstalk during thrombopoiesis in mice and possibly humans.


2010 ◽  
Vol 189 (7) ◽  
pp. 1087-1096 ◽  
Author(s):  
Kyoko Okada ◽  
Francesca Bartolini ◽  
Alexandra M. Deaconescu ◽  
James B. Moseley ◽  
Zvonimir Dogic ◽  
...  

The tumor suppressor protein adenomatous polyposis coli (APC) regulates cell protrusion and cell migration, processes that require the coordinated regulation of actin and microtubule dynamics. APC localizes in vivo to microtubule plus ends and actin-rich cortical protrusions, and has well-documented direct effects on microtubule dynamics. However, its potential effects on actin dynamics have remained elusive. Here, we show that the C-terminal “basic” domain of APC (APC-B) potently nucleates the formation of actin filaments in vitro and stimulates actin assembly in cells. Nucleation is achieved by a mechanism involving APC-B dimerization and recruitment of multiple actin monomers. Further, APC-B nucleation activity is synergistic with its in vivo binding partner, the formin mDia1. Together, APC-B and mDia1 overcome a dual cellular barrier to actin assembly imposed by profilin and capping protein. These observations define a new function for APC and support an emerging view of collaboration between distinct actin assembly–promoting factors with complementary activities.


2007 ◽  
Vol 35 (5) ◽  
pp. 1018-1020 ◽  
Author(s):  
M. Leitges

The aim of our group is to identify PKC (protein kinase C) in vivo function by analysing individual PKC knockouts we have generated over the past few years. The general approach we are using to identify target tissues and/or defined cell populations within the mouse for further investigation is a detailed expression analysis of individual PKC isoforms. For these purposes, we have established several specific tools in the past that allow us to follow up isoform-specific PKC expression on a very precise level. Doing so, we have started to investigate PKC expression profiles under various tumour conditions in mice. As predicted, we were able to identify various PKC isoforms to be either up- or down-regulated during the development and progression of certain tumours, implying that these isoforms are substantially linked to the biology of these tumours. In order to prove this hypothesis, we then crossed relevant PKC knockout lines on the appropriate tumour background and analysed tumour growth and progression under PKC-deficient conditions. Exemplary of this approach, recent data generated with PKCα-deficient APCMin (adenomatous polyposis coli) mice identify PKCα in this system acting as a tumour suppressor instead of being a promoter as suggested from PMA data.


Sign in / Sign up

Export Citation Format

Share Document