gastrointestinal epithelium
Recently Published Documents


TOTAL DOCUMENTS

112
(FIVE YEARS 19)

H-INDEX

27
(FIVE YEARS 4)

2021 ◽  
Vol 12 ◽  
Author(s):  
Michelle D. Cherne ◽  
Barkan Sidar ◽  
T. Andrew Sebrell ◽  
Humberto S. Sanchez ◽  
Kody Heaton ◽  
...  

Immunosurveillance of the gastrointestinal epithelium by mononuclear phagocytes (MNPs) is essential for maintaining gut health. However, studying the complex interplay between the human gastrointestinal epithelium and MNPs such as dendritic cells (DCs) is difficult, since traditional cell culture systems lack complexity, and animal models may not adequately represent human tissues. Microphysiological systems, or tissue chips, are an attractive alternative for these investigations, because they model functional features of specific tissues or organs using microscale culture platforms that recreate physiological tissue microenvironments. However, successful integration of multiple of tissue types on a tissue chip platform to reproduce physiological cell-cell interactions remains a challenge. We previously developed a tissue chip system, the gut organoid flow chip (GOFlowChip), for long term culture of 3-D pluripotent stem cell-derived human intestinal organoids. Here, we optimized the GOFlowChip platform to build a complex microphysiological immune-cell-epithelial cell co-culture model in order to study DC-epithelial interactions in human stomach. We first tested different tubing materials and chip configurations to optimize DC loading onto the GOFlowChip and demonstrated that DC culture on the GOFlowChip for up to 20 h did not impact DC activation status or viability. However, Transwell chemotaxis assays and live confocal imaging revealed that Matrigel, the extracellular matrix (ECM) material commonly used for organoid culture, prevented DC migration towards the organoids and the establishment of direct MNP-epithelial contacts. Therefore, we next evaluated DC chemotaxis through alternative ECM materials including Matrigel-collagen mixtures and synthetic hydrogels. A polysaccharide-based synthetic hydrogel, VitroGel®-ORGANOID-3 (V-ORG-3), enabled significantly increased DC chemotaxis through the matrix, supported organoid survival and growth, and did not significantly alter DC activation or viability. On the GOFlowChip, DCs that were flowed into the chip migrated rapidly through the V-ORG matrix and reached organoids embedded deep within the chip, with increased interactions between DCs and gastric organoids. The successful integration of DCs and V-ORG-3 embedded gastric organoids into the GOFlowChip platform now permits real-time imaging of MNP-epithelial interactions and other investigations of the complex interplay between gastrointestinal MNPs and epithelial cells in their response to pathogens, candidate drugs and mucosal vaccines.


2021 ◽  
Vol 14 (5) ◽  
pp. 453
Author(s):  
Gabriela Wiergowska ◽  
Dominika Ludowicz ◽  
Kamil Wdowiak ◽  
Andrzej Miklaszewski ◽  
Kornelia Lewandowska ◽  
...  

To improve physicochemical properties of vardenafil hydrochloride (VAR), its amorphous form and combinations with excipients—hydroxypropyl methylcellulose (HPMC) and β-cyclodextrin (β-CD)—were prepared. The impact of the modification on physicochemical properties was estimated by comparing amorphous mixtures of VAR to their crystalline form. The amorphous form of VAR was obtained as a result of the freeze-drying process. Confirmation of the identity of the amorphous dispersion of VAR was obtained through the use of comprehensive analysis techniques—X-ray powder diffraction (PXRD) and differential scanning calorimetry (DSC), supported by FT-IR (Fourier-transform infrared spectroscopy) coupled with density functional theory (DFT) calculations. The amorphous mixtures of VAR increased its apparent solubility compared to the crystalline form. Moreover, a nearly 1.3-fold increase of amorphous VAR permeability through membranes simulating gastrointestinal epithelium as a consequence of the changes of apparent solubility (Papp crystalline VAR = 6.83 × 10−6 cm/s vs. Papp amorphous VAR = 8.75 × 10−6 cm/s) was observed, especially for its combinations with β-CD in the ratio of 1:5—more than 1.5-fold increase (Papp amorphous VAR = 8.75 × 10−6 cm/s vs. Papp amorphous VAR:β-CD 1:5 = 13.43 × 10−6 cm/s). The stability of the amorphous VAR was confirmed for 7 months. The HPMC and β-CD are effective modifiers of its apparent solubility and permeation through membranes simulating gastrointestinal epithelium, suggesting a possibility of a stronger pharmacological effect.


2021 ◽  
Vol 22 (8) ◽  
pp. 4038
Author(s):  
Franziska Dengler ◽  
Sofia Sova ◽  
Antti M. Salo ◽  
Joni M. Mäki ◽  
Peppi Koivunen ◽  
...  

The HIF prolyl 4-hydroxylases (HIF-P4H) control hypoxia-inducible factor (HIF), a powerful mechanism regulating cellular adaptation to decreased oxygenation. The gastrointestinal epithelium subsists in “physiological hypoxia” and should therefore have an especially well-designed control over this adaptation. Thus, we assessed the absolute mRNA expression levels of the HIF pathway components, Hif1a, HIF2a, Hif-p4h-1, 2 and 3 and factor inhibiting HIF (Fih1) in murine jejunum, caecum and colon epithelium using droplet digital PCR. We found a higher expression of all these genes towards the distal end of the gastrointestinal tract. We detected mRNA for Hif-p4h-1, 2 and 3 in all parts of the gastrointestinal tract. Hif-p4h-2 had significantly higher expression levels compared to Hif-p4h-1 and 3 in colon and caecum epithelium. To test the roles each HIF-P4H isoform plays in the gut epithelium, we measured the gene expression of classical HIF target genes in Hif-p4h-1−/−, Hif-p4h-2 hypomorph and Hif-p4h-3−/− mice. Only Hif-p4h-2 hypomorphism led to an upregulation of HIF target genes, confirming a predominant role of HIF-P4H-2. However, the abundance of Hif-p4h-1 and 3 expression in the gastrointestinal epithelium implies that these isoforms may have specific functions as well. Thus, the development of selective inhibitors might be useful for diverging therapeutic needs.


Author(s):  
Lila Bazina ◽  
Dimitrios Bitounis ◽  
Xiaoqiong Cao ◽  
Glen M. DeLoid ◽  
Dorsa Parviz ◽  
...  

Background: engineered nanomaterials (ENMs) have already made their way into myriad applications and products across multiple industries.


2020 ◽  
Vol 21 (20) ◽  
pp. 7439
Author(s):  
Kimberly Hartl ◽  
Michael Sigal

The intestinal epithelium serves as a barrier to discriminate the outside from the inside and is in constant exchange with the luminal contents, including nutrients and the microbiota. Pathogens have evolved mechanisms to overcome the multiple ways of defense in the mucosa, while several members of the microbiota can exhibit pathogenic features once the healthy barrier integrity of the epithelium is disrupted. This not only leads to symptoms accompanying the acute infection but may also contribute to long-term injuries such as genomic instability, which is linked to mutations and cancer. While for Helicobacter pylori a link between infection and cancer is well established, many other bacteria and their virulence factors have only recently been linked to gastrointestinal malignancies through epidemiological as well as mechanistic studies. This review will focus on those pathogens and members of the microbiota that have been linked to genotoxicity in the context of gastric or colorectal cancer. We will address the mechanisms by which such bacteria establish contact with the gastrointestinal epithelium—either via an existing breach in the barrier or via their own virulence factors as well as the mechanisms by which they interfere with host genomic integrity.


2020 ◽  
Vol 12 (558) ◽  
pp. eabc0441
Author(s):  
Junwei Li ◽  
Thomas Wang ◽  
Ameya R. Kirtane ◽  
Yunhua Shi ◽  
Alexis Jones ◽  
...  

Epithelial tissues line the organs of the body, providing an initial protective barrier as well as a surface for nutrient and drug absorption. Here, we identified enzymatic components present in the gastrointestinal epithelium that can serve as selective means for tissue-directed polymerization. We focused on the small intestine, given its role in drug and nutrient absorption and identified catalase as an essential enzyme with the potential to catalyze polymerization and growth of synthetic biomaterial layers. We demonstrated that the polymerization of dopamine by catalase yields strong tissue adhesion. We characterized the mechanism and specificity of the polymerization in segments of the gastrointestinal tracts of pigs and humans ex vivo. Moreover, we demonstrated proof of concept for application of these gastrointestinal synthetic epithelial linings for drug delivery, enzymatic immobilization for digestive supplementation, and nutritional modulation through transient barrier formation in pigs. This catalase-based approach to in situ biomaterial generation may have broad indications for gastrointestinal applications.


2020 ◽  
Vol 133 (16) ◽  
pp. jcs227355
Author(s):  
Christopher Nosala ◽  
Kari D. Hagen ◽  
Nicholas Hilton ◽  
Tiffany M. Chase ◽  
Kelci Jones ◽  
...  

ABSTRACTGiardia lamblia, a widespread parasitic protozoan, attaches to the host gastrointestinal epithelium by using the ventral disc, a complex microtubule (MT) organelle. The ‘cup-like’ disc is formed by a spiral MT array that scaffolds numerous disc-associated proteins (DAPs) and higher-order protein complexes. In interphase, the disc is hyperstable and has limited MT dynamics; however, it remains unclear how DAPs confer these properties. To investigate mechanisms of hyperstability, we confirmed the disc-specific localization of over 50 new DAPs identified by using both a disc proteome and an ongoing GFP localization screen. DAPs localize to specific disc regions and many lack similarity to known proteins. By screening 14 CRISPRi-mediated DAP knockdown (KD) strains for defects in hyperstability and MT dynamics, we identified two strains – DAP5188KD and DAP6751KD –with discs that dissociate following high-salt fractionation. Discs in the DAP5188KD strain were also sensitive to treatment with the MT-polymerization inhibitor nocodazole. Thus, we confirm here that at least two of the 87 known DAPs confer hyperstable properties to the disc MTs, and we anticipate that other DAPs contribute to disc MT stability, nucleation and assembly.


Author(s):  
Mallik Singaraju ◽  
Subish Palaian ◽  
Pathiyil Ravi Shankar ◽  
Sunil Shrestha

More than half the cancer patients undergoing cancer chemotherapy develop adverse drug reactions (ADRs). Cancer chemotherapeutic agents have a lower risk-benefit ratio than other drug therapy and kill cancerous as well as the normal rapidly dividing cells including bone marrow cells, gastrointestinal epithelium, hair follicles, etc. Their main ADRs are nausea and vomiting, mucositis, constipation, diarrhea, hematological toxicities, cardiac toxicity, alopecia, gonadal toxicity, pulmonary toxicity, neurotoxicity, nephrotoxicity, etc. The severity of the adverse effects may range from mild nausea to life-threatening neutropenia. Administering premedication and antidotes are very vital in these patients. Upon the occurrence of adverse effects, immediate steps should be taken to manage them. Though the ADRs due to anticancer medications are not avoidable, careful monitoring of the patients and modulating the drug schedules/dosages can help in minimizing them. Healthcare professionals should also develop strategies to minimize the occupational hazards associated with these drugs.


Sign in / Sign up

Export Citation Format

Share Document