scholarly journals Expression of endothelin 3 by mesenchymal cells of embryonic mouse caecum

Gut ◽  
1999 ◽  
Vol 44 (2) ◽  
pp. 246-252 ◽  
Author(s):  
M A Leibl ◽  
T Ota ◽  
M N Woodward ◽  
S E Kenny ◽  
D A Lloyd ◽  
...  

BackgroundMutations in endothelin 3 (EDN3) and endothelin B receptor (EDNRB) genes cause terminal colonic aganglionosis in mice, and mutations in these genes have also been linked to the terminal aganglionosis seen in human Hirschsprung’s disease. However, details of EDN3 expression during embryogenesis are lacking, and consequently the cellular mechanism by which EDN3 regulates innervation of the terminal gut is unclear.AimsTo localise the expression of EDN3 and EDNRB in the embryonic mouse gut.MethodsExpression of EDN3 and EDNRB mRNA was analysed by reverse transcription polymerase chain reaction and in situ hybridisation.ResultsHigh levels of EDN3 mRNA expression were restricted to mesenchymal cells of the caecum before and after the arrival of neural crest cells. In contrast, EDNRB expression along the gut displayed a time dependent pattern similar to those of the protein tyrosine kinase ret and the neural crest cell marker PGP9.5.ConclusionsMesenchymal cells of the caecum express high levels of EDN3 mRNA during embryogenesis and hence the production of EDN3 at the caecum is likely to act on neural crest cells as a paracrine factor necessary for subsequent innervation of the terminal gut.

Development ◽  
1997 ◽  
Vol 124 (9) ◽  
pp. 1745-1755 ◽  
Author(s):  
D.S. Choi ◽  
S.J. Ward ◽  
N. Messaddeq ◽  
J.M. Launay ◽  
L. Maroteaux

During embryogenesis, serotonin has been reported to be involved in craniofacial and cardiovascular morphogenesis. The detailed molecular mechanisms underlying these functions, however remain unknown. From mouse and human species, we have recently reported the cloning of 5-HT2B receptors which share signal transduction pathways with other 5-HT2 receptor subtypes (5-HT2A and 5-HT2C). In addition to phospholipase C stimulation, it appears that these three subtypes of receptor transduce a common serotonin-induced mitogenic activity, which could be important for cell differentiation and proliferation. We have first investigated the expression of 5-HT2 receptor mRNAs in the mouse embryo. Interestingly, a peak of 5-HT2B receptor mRNA expression was detected 8–9 days postcoitum, whereas there was only low level 5-HT2A and no 5-HT2C receptor mRNA expression at this stage. Expression of this receptor was confirmed by binding assays using a 5-HT2-specific ligand which revealed a peak of binding to membrane preparations from 9 days postcoitum embryos. In addition, whole mount in situ hybridisation and immunohistochemistry on similar stage embryos detected 5-HT2B expression in neural crest cells, heart myocardium and somites. The requirement for functional 5-HT2B receptors between 8 and 9 days postcoitum is supported by culture of embryos exposed to 5-HT2-specific ligands; 5-HT2B high-affinity antagonist such as ritanserin, induced morphological defects in the cephalic region, heart and neural tube. These antagonistic treatments interfere with cranial neural crest cell migration, induce their apoptosis, and are responsible for abnormal sarcomeric organisation of the subepicardial layer and for the absence of the trabecular cell layer in the ventricular myocardium. This report indicates for the first time that 5-HT2B receptors are actively mediating the action of serotonin on embryonic morphogenesis, probably by preventing the differentiation of cranial neural crest cells and myocardial precursor cells.


Development ◽  
1992 ◽  
Vol 115 (2) ◽  
pp. 561-572 ◽  
Author(s):  
T.M. Luider ◽  
M.J. Peters-van der Sanden ◽  
J.C. Molenaar ◽  
D. Tibboel ◽  
A.W. van der Kamp ◽  
...  

During vertebrate embryogenesis, interaction between neural crest cells and the enteric mesenchyme gives rise to the development of the enteric nervous system. In birds, monoclonal antibody HNK-1 is a marker for neural crest cells from the entire rostrocaudal axis. In this study, we aimed to characterize the HNK-1 carrying cells and antigen(s) during the formation of the enteric nervous system in the hindgut. Immunohistological findings showed that HNK-1-positive mesenchymal cells are present in the gut prior to neural crest cell colonization. After neural crest cell colonization this cell type cannot be visualized anymore with the HNK-1 antibody. We characterized the HNK-1 antigens that are present before and after neural crest cell colonization of the hindgut. Immunoblot analysis of plasma membranes from embryonic hindgut revealed a wide array of HNK-1-carrying glycoproteins. We found that two HNK-1 antigens are present in E4 hindgut prior to neural crest cell colonization and that the expression of these antigens disappears after neural crest colonization. These two membrane glycoproteins, G-42 and G-44, have relative molecular masses of 42,000 and 44,000, respectively, and they both have isoelectric points of 5.5 under reducing conditions. We suggest that these HNK-1 antigens and the HNK-1-positive mesenchymal cells have some role in the formation of the enteric nervous system.


Development ◽  
2002 ◽  
Vol 129 (15) ◽  
pp. 3621-3632 ◽  
Author(s):  
Alicia Santiago ◽  
Carol A. Erickson

Little is known about the mechanisms that direct neural crest cells to the appropriate migratory pathways. Our aim was to determine how neural crest cells that are specified as neurons and glial cells only migrate ventrally and are prevented from migrating dorsolaterally into the skin, whereas neural crest cells specified as melanoblasts are directed into the dorsolateral pathway. Eph receptors and their ephrin ligands have been shown to be essential for migration of many cell types during embryonic development. Consequently, we asked if ephrin-B proteins participate in the guidance of melanoblasts along the dorsolateral pathway, and prevent early migratory neural crest cells from invading the dorsolateral pathway. Using Fc fusion proteins, we detected the expression of ephrin-B ligands in the dorsolateral pathway at the stage when neural crest cells are migrating ventrally. Furthermore, we show that ephrins block dorsolateral migration of early-migrating neural crest cells because when we disrupt the Eph-ephrin interactions by addition of soluble ephrin-B ligand to trunk explants, early neural crest cells migrate inappropriately into the dorsolateral pathway. Surprisingly, we discovered the ephrin-B ligands continue to be expressed along the dorsolateral pathway during melanoblast migration. RT-PCR analysis, in situ hybridisation, and cell surface-labelling of neural crest cell cultures demonstrate that melanoblasts express several EphB receptors. In adhesion assays, engagement of ephrin-B ligands to EphB receptors increases melanoblast attachment to fibronectin. Cell migration assays demonstrate that ephrin-B ligands stimulate the migration of melanoblasts. Furthermore, when Eph signalling is disrupted in vivo, melanoblasts are prevented from migrating dorsolaterally, suggesting ephrin-B ligands promote the dorsolateral migration of melanoblasts. Thus, transmembrane ephrins act as bifunctional guidance cues: they first repel early migratory neural crest cells from the dorsolateral path, and then later stimulate the migration of melanoblasts into this pathway. The mechanisms by which ephrins regulate repulsion or attraction in neural crest cells are unknown. One possibility is that the cellular response involves signalling to the actin cytoskeleton, potentially involving the activation of Cdc42/Rac family of GTPases. In support of this hypothesis, we show that adhesion of early migratory cells to an ephrin-B-derivatized substratum results in cell rounding and disruption of the actin cytoskeleton, whereas plating of melanoblasts on an ephrin-B substratum induces the formation of microspikes filled with F-actin.


1998 ◽  
Vol 76 (6) ◽  
pp. 1093-1099 ◽  
Author(s):  
Karin Opdecamp ◽  
Lidia Kos ◽  
Heinz Arnheiter ◽  
William J Pavan

In both mice and humans, mutations in the genes encoding the endothelin B receptor and its ligand endothelin 3 lead to deficiencies in neural crest-derived melanocytes and enteric neurons. The discrete steps at which endothelins exert their functions in melanocyte development were examined in mouse neural crest cell cultures. Such cultures, kept in the presence of fetal calf serum, gave rise to cells expressing the early melanoblast marker Dct even in the absence of the phorbol ester tetradecanoyl phorbol acetate (TPA) or endothelins. However, these early (Dct+) cells did not proliferate and pigmented cells never formed unless TPA or endothelins were added. In fact, endothelin 2 was as potent as TPA in promoting the generation of both Dct+ melanoblasts and pigmented cells, and endothelin 1 or endothelin 3 stimulated the generation of melanoblasts and of pigmented cells to an even greater extent. The inhibition of this stimulation by the selective endothelin B receptor antagonist BQ-788 (N-cis-2,6-dimethylpiperidinocarbonyl-L-alpha-methylleucyl-D-1-methoxycarbonyltryptophanyl-D-norleucine) suggested that the three endothelins all signal through the endothelin B receptor. This receptor was indeed expressed in Dct+ melanoblasts, in addition to cells lacking Dct expression. The results demonstrate that endothelins are potent stimulators of melanoblast proliferation and differentiation.Key words: neural crest, melanocyte, endothelin, differentiation.


2003 ◽  
Vol 38 (9) ◽  
pp. 1322-1328 ◽  
Author(s):  
Mark N Woodward ◽  
Emma L Sidebotham ◽  
M.Gwen Connell ◽  
Simon E Kenny ◽  
Camille R Vaillant ◽  
...  

Development ◽  
1995 ◽  
Vol 121 (2) ◽  
pp. 525-538 ◽  
Author(s):  
M.A. Selleck ◽  
M. Bronner-Fraser

We have investigated the lineage and tissue interactions that result in avian neural crest cell formation from the ectoderm. Presumptive neural plate was grafted adjacent to non-neural ectoderm in whole embryo culture to examine the role of tissue interactions in ontogeny of the neural crest. Our results show that juxtaposition of non-neural ectoderm and presumptive neural plate induces the formation of neural crest cells. Quail/chick recombinations demonstrate that both the prospective neural plate and the prospective epidermis can contribute to the neural crest. When similar neural plate/epidermal confrontations are performed in tissue culture to look at the formation of neural crest derivatives, juxtaposition of epidermis with either early (stages 4–5) or later (stages 6–10) neural plate results in the generation of both melanocytes and sympathoadrenal cells. Interestingly, neural plates isolated from early stages form no neural crest cells, whereas those isolated later give rise to melanocytes but not crest-derived sympathoadrenal cells. Single cell lineage analysis was performed to determine the time at which the neural crest lineage diverges from the epidermal lineage and to elucidate the timing of neural plate/epidermis interactions during normal development. Our results from stage 8 to 10+ embryos show that the neural plate/neural crest lineage segregates from the epidermis around the time of neural tube closure, suggesting that neural induction is still underway at open neural plate stages.


Development ◽  
1991 ◽  
Vol 113 (4) ◽  
pp. 1069-1084 ◽  
Author(s):  
T. Lallier ◽  
M. Bronner-Fraser

The mechanisms of neural crest cell interaction with laminin were explored using a quantitative cell attachment assay. With increasing substratum concentrations, an increasing percentage of neural crest cells adhere to laminin. Cell adhesion at all substratum concentrations was inhibited by the CSAT antibody, which recognizes the chick beta 1 subunit of integrin, suggesting that beta 1-integrins mediate neural crest cell interactions with laminin. The HNK-1 antibody, which recognizes a carbohydrate epitope, inhibited neural crest cell attachment to laminin at low coating concentrations (greater than 1 microgram ml-1; Low-LM), but not at high coating concentration of laminin (10 micrograms ml-1; High-LM). Attachment to Low-LM occurred in the absence of divalent cations, whereas attachment to High-LM required greater than 0.1 mM Ca2+ or Mn2+. Neural crest cell adherence to the E8 fragment of laminin, derived from its long arm, was similar to that on intact laminin at high and low coating concentrations, suggesting that this fragment contains the neural crest cell binding site(s). The HNK-1 antibody recognizes a protein of 165,000 Mr which is also found in immunoprecipitates using antibodies against the beta 1 subunit of integrin and is likely to be an integrin alpha subunit or an integrin-associated protein. Our results suggest that the HNK-1 epitope on neural crest cells is present on or associated with a novel or differentially glycosylated form of beta 1-integrin, which recognizes laminin in the apparent absence of divalent cations. We conclude that neural crest cells have at least two functionally independent means of attachment to laminin which are revealed at different substratum concentrations and/or conformations of laminin.


Development ◽  
1989 ◽  
Vol 106 (4) ◽  
pp. 809-816 ◽  
Author(s):  
G.N. Serbedzija ◽  
M. Bronner-Fraser ◽  
S.E. Fraser

To permit a more detailed analysis of neural crest cell migratory pathways in the chick embryo, neural crest cells were labelled with a nondeleterious membrane intercalating vital dye, DiI. All neural tube cells with endfeet in contact with the lumen, including premigratory neural crest cells, were labelled by pressure injecting a solution of DiI into the lumen of the neural tube. When assayed one to three days later, migrating neural crest cells, motor axons, and ventral root cells were the only cells types external to the neural tube labelled with DiI. During the neural crest cell migratory phase, distinctly labelled cells were found along: (1) a dorsolateral pathway, under the epidermis, as well adjacent to and intercalating through the dermamyotome; and (2) a ventral pathway, through the rostral portion of each sclerotome and around the dorsal aorta as described previously. In contrast to those cells migrating through the sclerotome, labelled cells on the dorsolateral pathway were not segmentally arranged along the rostrocaudal axis. DiI-labelled cells were observed in all truncal neural crest derivatives, including subepidermal presumptive pigment cells, dorsal root ganglia, and sympathetic ganglia. By varying the stage at which the injection was performed, neural crest cell emigration at the level of the wing bud was shown to occur from stage 13 through stage 22. In addition, neural crest cells were found to populate their derivatives in a ventral-to-dorsal order, with the latest emigrating cells migrating exclusively along the dorsolateral pathway.


Development ◽  
1999 ◽  
Vol 126 (10) ◽  
pp. 2181-2189 ◽  
Author(s):  
B.J. Eickholt ◽  
S.L. Mackenzie ◽  
A. Graham ◽  
F.S. Walsh ◽  
P. Doherty

Collapsin-1 belongs to the Semaphorin family of molecules, several members of which have been implicated in the co-ordination of axon growth and guidance. Collapsin-1 can function as a selective chemorepellent for sensory neurons, however, its early expression within the somites and the cranial neural tube (Shepherd, I., Luo, Y., Raper, J. A. and Chang, S. (1996) Dev. Biol. 173, 185–199) suggest that it might contribute to the control of additional developmental processes in the chick. We now report a detailed study on the expression of collapsin-1 as well as on the distribution of collapsin-1-binding sites in regions where neural crest cell migration occurs. collapsin-1 expression is detected in regions bordering neural crest migration pathways in both the trunk and hindbrain regions and a receptor for collapsin-1, neuropilin-1, is expressed by migrating crest cells derived from both regions. When added to crest cells in vitro, a collapsin-1-Fc chimeric protein induces morphological changes similar to those seen in neuronal growth cones. In order to test the function of collapsin-1 on the migration of neural crest cells, an in vitro assay was used in which collapsin-1-Fc was immobilised in alternating stripes consisting of collapsin-Fc/fibronectin versus fibronectin alone. Explanted neural crest cells derived from both trunk and hindbrain regions avoided the collapsin-Fc-containing substratum. These results suggest that collapsin-1 signalling can contribute to the patterning of neural crest cell migration in the developing chick.


Development ◽  
1990 ◽  
Vol 109 (4) ◽  
pp. 925-934 ◽  
Author(s):  
L.C. Smith-Thomas ◽  
A.R. Johnson ◽  
J.W. Fawcett

Amongst the many cell types that differentiate from migratory neural crest cells are the Schwann cells of the peripheral nervous system. While it has been demonstrated that Schwann cells will not fully differentiate unless in contact with neurons, the factors that cause neural crest cells to enter the differentiative pathway that leads to Schwann cells are unknown. In a previous paper (Development 105: 251, 1989), we have demonstrated that a proportion of morphologically undifferentiated neural crest cells express the Schwann cell markers 217c and NGF receptor, and later, as they acquire the bipolar morphology typical of Schwann cells in culture, express S-100 and laminin. In the present study, we have grown axons from embryonic retina on neural crest cultures to see whether this has an effect on the differentiation of neural crest cells into Schwann cells. After 4 to 6 days of co-culture, many more cells had acquired bipolar morphology and S-100 staining than in controls with no retinal explant, and most of these cells were within 200 microns of an axon, though not necessarily in contact with axons. However, the number of cells expressing the earliest Schwann cell markers 217c and NGF receptor was not affected by the presence of axons. We conclude that axons produce a factor, which is probably diffusible, and which makes immature Schwann cells differentiate. The factor does not, however, influence the entry of neural crest cells into the earliest stages of the Schwann cell differentiative pathway.


Sign in / Sign up

Export Citation Format

Share Document