Ephrin-B ligands play a dual role in the control of neural crest cell migration

Development ◽  
2002 ◽  
Vol 129 (15) ◽  
pp. 3621-3632 ◽  
Author(s):  
Alicia Santiago ◽  
Carol A. Erickson

Little is known about the mechanisms that direct neural crest cells to the appropriate migratory pathways. Our aim was to determine how neural crest cells that are specified as neurons and glial cells only migrate ventrally and are prevented from migrating dorsolaterally into the skin, whereas neural crest cells specified as melanoblasts are directed into the dorsolateral pathway. Eph receptors and their ephrin ligands have been shown to be essential for migration of many cell types during embryonic development. Consequently, we asked if ephrin-B proteins participate in the guidance of melanoblasts along the dorsolateral pathway, and prevent early migratory neural crest cells from invading the dorsolateral pathway. Using Fc fusion proteins, we detected the expression of ephrin-B ligands in the dorsolateral pathway at the stage when neural crest cells are migrating ventrally. Furthermore, we show that ephrins block dorsolateral migration of early-migrating neural crest cells because when we disrupt the Eph-ephrin interactions by addition of soluble ephrin-B ligand to trunk explants, early neural crest cells migrate inappropriately into the dorsolateral pathway. Surprisingly, we discovered the ephrin-B ligands continue to be expressed along the dorsolateral pathway during melanoblast migration. RT-PCR analysis, in situ hybridisation, and cell surface-labelling of neural crest cell cultures demonstrate that melanoblasts express several EphB receptors. In adhesion assays, engagement of ephrin-B ligands to EphB receptors increases melanoblast attachment to fibronectin. Cell migration assays demonstrate that ephrin-B ligands stimulate the migration of melanoblasts. Furthermore, when Eph signalling is disrupted in vivo, melanoblasts are prevented from migrating dorsolaterally, suggesting ephrin-B ligands promote the dorsolateral migration of melanoblasts. Thus, transmembrane ephrins act as bifunctional guidance cues: they first repel early migratory neural crest cells from the dorsolateral path, and then later stimulate the migration of melanoblasts into this pathway. The mechanisms by which ephrins regulate repulsion or attraction in neural crest cells are unknown. One possibility is that the cellular response involves signalling to the actin cytoskeleton, potentially involving the activation of Cdc42/Rac family of GTPases. In support of this hypothesis, we show that adhesion of early migratory cells to an ephrin-B-derivatized substratum results in cell rounding and disruption of the actin cytoskeleton, whereas plating of melanoblasts on an ephrin-B substratum induces the formation of microspikes filled with F-actin.

Development ◽  
1999 ◽  
Vol 126 (10) ◽  
pp. 2181-2189 ◽  
Author(s):  
B.J. Eickholt ◽  
S.L. Mackenzie ◽  
A. Graham ◽  
F.S. Walsh ◽  
P. Doherty

Collapsin-1 belongs to the Semaphorin family of molecules, several members of which have been implicated in the co-ordination of axon growth and guidance. Collapsin-1 can function as a selective chemorepellent for sensory neurons, however, its early expression within the somites and the cranial neural tube (Shepherd, I., Luo, Y., Raper, J. A. and Chang, S. (1996) Dev. Biol. 173, 185–199) suggest that it might contribute to the control of additional developmental processes in the chick. We now report a detailed study on the expression of collapsin-1 as well as on the distribution of collapsin-1-binding sites in regions where neural crest cell migration occurs. collapsin-1 expression is detected in regions bordering neural crest migration pathways in both the trunk and hindbrain regions and a receptor for collapsin-1, neuropilin-1, is expressed by migrating crest cells derived from both regions. When added to crest cells in vitro, a collapsin-1-Fc chimeric protein induces morphological changes similar to those seen in neuronal growth cones. In order to test the function of collapsin-1 on the migration of neural crest cells, an in vitro assay was used in which collapsin-1-Fc was immobilised in alternating stripes consisting of collapsin-Fc/fibronectin versus fibronectin alone. Explanted neural crest cells derived from both trunk and hindbrain regions avoided the collapsin-Fc-containing substratum. These results suggest that collapsin-1 signalling can contribute to the patterning of neural crest cell migration in the developing chick.


Development ◽  
1988 ◽  
Vol 103 (4) ◽  
pp. 743-756 ◽  
Author(s):  
H.H. Epperlein ◽  
W. Halfter ◽  
R.P. Tucker

It is generally assumed that in amphibian embryos neural crest cells migrate dorsally, where they form the mesenchyme of the dorsal fin, laterally (between somites and epidermis), where they give rise to pigment cells, and ventromedially (between somites and neural tube), where they form the elements of the peripheral nervous system. While there is agreement about the crest migratory routes in the axolotl (Ambystoma mexicanum), different opinions exist about the lateral pathway in Xenopus. We investigated neural crest cell migration in Xenopus (stages 23, 32, 35/36 and 41) using the X. laevis-X. borealis nuclear marker system and could not find evidence for cells migrating laterally. We have also used immunohistochemistry to study the distribution of the extracellular matrix (ECM) glycoproteins fibronectin (FN) and tenascin (TN), which have been implicated in directing neural crest cells during their migrations in avian and mammalian embryos, in the neural crest migratory pathways of Xenopus and the axolotl. In premigratory stages of the crest, both in Xenopus (stage 22) and the axolotl (stage 25), FN was found subepidermally and in extracellular spaces around the neural tube, notochord and somites. The staining was particularly intense in the dorsal part of the embryo, but it was also present along the visceral and parietal layers of the lateral plate mesoderm. TN, in contrast, was found only in the anterior trunk mesoderm in Xenopus; in the axolotl, it was absent. During neural crest cell migration in Xenopus (stages 25–33) and the axolotl (stages 28–35), anti-FN stained the ECM throughout the embryo, whereas anti-TN staining was limited to dorsal regions. There it was particularly intense medially, i.e. in the dorsal fin, around the neural tube, notochord, dorsal aorta and at the medial surface of the somites (stage 35 in both species). During postmigratory stages in Xenopus (stage 40), anti-FN staining was less intense than anti-TN staining. In culture, axolotl neural crest cells spread differently on FN- and TN-coated substrata. On TN, the onset of cellular outgrowth was delayed for about 1 day, but after 3 days the extent of outgrowth was indistinguishable from cultures grown on FN. However, neural crest cells in 3-day-old cultures were much more flattened on FN than on TN. We conclude that both FN and TN are present in the ECM that lines the neural crest migratory pathways of amphibian embryos at the time when the neural crest cells are actively migrating. FN is present in the embryonic ECM before the onset of neural crest migration.(ABSTRACT TRUNCATED AT 400 WORDS)


Development ◽  
2000 ◽  
Vol 127 (6) ◽  
pp. 1161-1172 ◽  
Author(s):  
P.M. Kulesa ◽  
S.E. Fraser

Hindbrain neural crest cells were labeled with DiI and followed in ovo using a new approach for long-term time-lapse confocal microscopy. In ovo imaging allowed us to visualize neural crest cell migration 2–3 times longer than in whole embryo explant cultures, providing a more complete picture of the dynamics of cell migration from emergence at the dorsal midline to entry into the branchial arches. There were aspects of the in ovo neural crest cell migration patterning which were new and different. Surprisingly, there was contact between neural crest cell migration streams bound for different branchial arches. This cell-cell contact occurred in the region lateral to the otic vesicle, where neural crest cells within the distinct streams diverted from their migration pathways into the branchial arches and instead migrated around the otic vesicle to establish a contact between streams. Some individual neural crest cells did appear to cross between the streams, but there was no widespread mixing. Analysis of individual cell trajectories showed that neural crest cells emerge from all rhombomeres (r) and sort into distinct exiting streams adjacent to the even-numbered rhombomeres. Neural crest cell migration behaviors resembled the wide diversity seen in whole embryo chick explants, including chain-like cell arrangements; however, average in ovo cell speeds are as much as 70% faster. To test to what extent neural crest cells from adjoining rhombomeres mix along migration routes and within the branchial arches, separate groups of premigratory neural crest cells were labeled with DiI or DiD. Results showed that r6 and r7 neural crest cells migrated to the same spatial location within the fourth branchial arch. The diversity of migration behaviors suggests that no single mechanism guides in ovo hindbrain neural crest cell migration into the branchial arches. The cell-cell contact between migration streams and the co-localization of neural crest cells from adjoining rhombomeres within a single branchial arch support the notion that the pattern of hindbrain neural crest cell migration emerges dynamically with cell-cell communication playing an important guidance role.


Author(s):  
Marianne Bronner-Fraser

The formation of the embryo involves intricate cell movements, cell proliferation, and differentiation. The neural crest has long served as a model for the study of these processes because these cells: 1. migrate extensively along characteristic pathways during embryogenesis. 2. give rise to diverse and numerous derivatives, including pigment cells, adrenal chromaffin cells, and the ganglia of the peripheral nervous system; and 3. are accessible to surgical, immunological, and biochemical manipulations during both initial and certain later stages in their development. We are in the process of identifying factors that influence cell migration and differentiation in the neural crest system.Neural crest cells follow two primary migratory pathways in the trunk: a dorsolateral route underneath the skin, and a ventral route through the somite. Within the somites, neural crest cells preferentially migrate through the rostral half of each sclerotome but are absent from the caudal sclerotome. The regions through which neural crest cells migrate are lined with extracellular matrix (ECM) molecules. Because of the intimate relationship between neural crest cells and the surrounding matrix, it has been proposed that the ECM plays an important role in the initiation, guidance, and cessation of neural crest cell movement.


1986 ◽  
Vol 102 (2) ◽  
pp. 432-441 ◽  
Author(s):  
R B Runyan ◽  
G D Maxwell ◽  
B D Shur

Migrating embryonic cells have high levels of cell surface galactosyltransferase (GalTase) activity. It has been proposed that GalTase participates during migration by recognizing and binding to terminal N-acetylglucosamine (GlcNAc) residues on glycoconjugates within the extracellular matrix (Shur, B. D., 1982, Dev. Biol. 91:149-162). We tested this hypothesis using migrating neural crest cells as an in vitro model system. Cell surface GalTase activity was perturbed using three independent sets of reagents, and the effects on cell migration were analyzed by time-lapse microphotography. The GalTase modifier protein, alpha-lactalbumin (alpha-LA), was used to inhibit surface GalTase binding to terminal GlcNAc residues in the underlying substrate. alpha-LA inhibited neural crest cell migration on basal lamina-like matrices in a dose-dependent manner, while under identical conditions, alpha-LA had no effect on cell migration on fibronectin. Control proteins, such as lysozyme (structurally homologous to alpha-LA) and bovine serum albumin, did not effect migration on either matrix. Second, the addition of competitive GalTase substrates significantly inhibited neural crest cell migration on basal lamina-like matrices, but as above, had no effect on migration on fibronectin. Comparable concentrations of inappropriate sugars also had no effect on cell migration. Third, addition of the GalTase catalytic substrate, UDPgalactose, produced a dose-dependent increase in the rate of cell migration. Under identical conditions, the inappropriate sugar nucleotide, UDPglucose, had no effect. Quantitative enzyme assays confirmed the presence of GalTase substrates in basal lamina matrices, their absence in fibronectin matrices, and the ability of alpha-LA to inhibit GalTase activity towards basal lamina substrates. Laminin was found to be a principle GalTase substrate in the basal lamina, and when tested in vitro, alpha-LA inhibited cell migration on laminin. Together, these experiments show that neural crest cells have at least two distinct mechanisms for interacting with the substrate during migration, one that is fibronectin-dependent and one that uses GalTase recognition of basal lamina glycoconjugates.


Development ◽  
2002 ◽  
Vol 129 (2) ◽  
pp. 433-442 ◽  
Author(s):  
Paul A. Trainor ◽  
Dorothy Sobieszczuk ◽  
David Wilkinson ◽  
Robb Krumlauf

Cranial neural crest cells are a pluripotent population of cells derived from the neural tube that migrate into the branchial arches to generate the distinctive bone, connective tissue and peripheral nervous system components characteristic of the vertebrate head. The highly conserved segmental organisation of the vertebrate hindbrain plays an important role in pattering the pathways of neural crest cell migration and in generating the distinct or separate streams of crest cells that form unique structures in each arch. We have used focal injections of DiI into the developing mouse hindbrain in combination with in vitro whole embryo culture to map the patterns of cranial neural crest cell migration into the developing branchial arches. Our results show that mouse hindbrain-derived neural crest cells migrate in three segregated streams adjacent to the even-numbered rhombomeres into the branchial arches, and each stream contains contributions of cells from three rhombomeres in a pattern very similar to that observed in the chick embryo. There are clear neural crest-free zones adjacent to r3 and r5. Furthermore, using grafting and lineage-tracing techniques in cultured mouse embryos to investigate the differential ability of odd and even-numbered segments to generate neural crest cells, we find that odd and even segments have an intrinsic ability to produce equivalent numbers of neural crest cells. This implies that inter-rhombomeric signalling is less important than combinatorial interactions between the hindbrain and the adjacent arch environment in specific regions, in the process of restricting the generation and migration of neural crest cells. This creates crest-free territories and suggests that tissue interactions established during development and patterning of the branchial arches may set up signals that the neural plate is primed to interpret during the progressive events leading to the delamination and migration of neural crest cells. Using interspecies grafting experiments between mouse and chick embryos, we have shown that this process forms part of a conserved mechanism for generating neural crest-free zones and contributing to the separation of migrating crest populations with distinct Hox expression during vertebrate head development.


Development ◽  
1995 ◽  
Vol 121 (8) ◽  
pp. 2303-2312 ◽  
Author(s):  
R.M. Landolt ◽  
L. Vaughan ◽  
K.H. Winterhalter ◽  
D.R. Zimmermann

Chondroitin sulfate proteoglycans have been implicated in the regulation of cell migration and pattern formation in the developing peripheral nervous system. To identify whether the large aggregating proteoglycan versican might be mediating these processes, we prepared monospecific antibodies against a recombinant core protein fragment of chick versican. The purified antibodies recognize the predominant versican splice-variants V0 and V1. Using these antibodies, we revealed a close correlation between the spacio-temporal expression of versican and the formation of molecular boundaries flanking or transiently blocking the migration pathways of neural crest cells or motor and sensory axons. Versican is present in the caudal sclerotome, the early dorsolateral tissue underneath the ectoderm, the pelvic girdle precursor and to a certain extent in the perinotochordal mesenchyme. Versican is completely absent from tissues invaded by neural crest cells and extending axons. Upon completion of neural crest cell migration and axon outgrowth, versican expression is shifted to pre-chondrogenic areas. Since versican inhibits cellular interactions with fibronectin, laminin and collagen I in vitro, the selective expression of versican within barrier tissues may be linked to a functional role of versican in the guidance of migratory neural crest cells and outgrowing axons.


2007 ◽  
Vol 7 ◽  
pp. 1090-1113 ◽  
Author(s):  
Paige Snider ◽  
Michael Olaopa ◽  
Anthony B. Firulli ◽  
Simon J. Conway

Although it is well established that transgenic manipulation of mammalian neural crest-related gene expression and microsurgical removal of premigratory chicken andXenopusembryonic cardiac neural crest progenitors results in a wide spectrum of both structural and functional congenital heart defects, the actual functional mechanism of the cardiac neural crest cells within the heart is poorly understood. Neural crest cell migration and appropriate colonization of the pharyngeal arches and outflow tract septum is thought to be highly dependent on genes that regulate cell-autonomous polarized movement (i.e., gap junctions, cadherins, and noncanonicalWnt1pathway regulators). Once the migratory cardiac neural crest subpopulation finally reaches the heart, they have traditionally been thought to participate in septation of the common outflow tract into separate aortic and pulmonary arteries. However, several studies have suggested these colonizing neural crest cells may also play additional unexpected roles during cardiovascular development and may even contribute to a crest-derived stem cell population. Studies in both mice and chick suggest they can also enter the heart from the venous inflow as well as the usual arterial outflow region, and may contribute to the adult semilunar and atrioventricular valves as well as part of the cardiac conduction system. Furthermore, although they are not usually thought to give rise to the cardiomyocyte lineage, neural crest cells in the zebrafish (Danio rerio) can contribute to the myocardium and may have different functions in a species-dependent context. Intriguingly, both ablation of chick andXenopuspremigratory neural crest cells, and a transgenic deletion of mouse neural crest cell migration or disruption of the normal mammalian neural crest gene expression profiles, disrupts ventral myocardial function and/or cardiomyocyte proliferation. Combined, this suggests that either the cardiac neural crest secrete factor/s that regulate myocardial proliferation, can signal to the epicardium to subsequently secrete a growth factor/s, or may even contribute directly to the heart. Although there are species differences between mouse, chick, and Xenopus during cardiac neural crest cell morphogenesis, recent data suggest mouse and chick are more similar to each other than to the zebrafish neural crest cell lineage. Several groups have used the genetically definedPax3(splotch) mutant mice model to address the role of the cardiac neural crest lineage. Here we review the current literature, the neural crest-related role of thePax3transcription factor, and discuss potential function/s of cardiac neural crest-derived cells during cardiovascular developmental remodeling.


Development ◽  
1990 ◽  
Vol 109 (3) ◽  
pp. 533-551 ◽  
Author(s):  
R. Perris ◽  
J. Lofberg ◽  
C. Fallstrom ◽  
Y. von Boxberg ◽  
L. Olsson ◽  
...  

The skin of the white mutant axolotl larva is pigmented differently from that of the normal dark due to a local inability of the extracellular matrix (ECM) to support subepidermal migration of neural crest-derived pigment cell precursors. In the present study, we have compared the ECM of neural crest migratory pathways of normal dark and white mutant embryos ultrastructurally, immunohistochemically and biochemically to disclose differences in their structure/composition that could be responsible for the restriction of subepidermal neural crest cell migration in the white mutant axolotl. When examined by electron microscopy, in conjunction with computerized image analysis, the structural assembly of interstitial and basement membrane ECMs of the two embryos was found to be largely comparable. At stages of initial neural crest cell migration, however, fixation of the subepidermal ECM in situ with either Karnovsky-ruthenium red or with periodate-lysine-paraformaldehyde followed by ruthenium red-containing fixatives, revealed that fibrils of the dark matrix were significantly more abundant in associated electron-dense granules. This ultrastructural discrepancy of the white axolotl ECM was specific for the subepidermal region and suggested an abnormal proteoglycan distribution. Dark and white matrices of the medioventral migratory route of neural crest cells had a comparable appearance but differed from the corresponding subepidermal ECMs. Immunohistochemistry revealed only minor differences in the distribution of fibronectin, laminin, collagen types I, and IV, whereas collagen type III appeared differentially distributed in the two embryos. Chondroitin- and chondroitin-6-sulfate-rich proteoglycans were more prevalent in the white mutant embryo than in the dark, especially in the subepidermal space. Membrane microcarriers were utilized to explant site-specifically native ECM for biochemical analysis. Two-dimensional gel electrophoresis of these regional matrices revealed a number of differences in their protein content, principally in constituents of apparent molecular masses of 30–90,000. Taken together our observations suggest that local divergences in the concentration/assembly of low and high molecular mass proteins and proteoglycans of the ECM encountered by the moving neural crest cells account for their disparate migratory behavior in the white mutant axolotl.


Development ◽  
1992 ◽  
Vol 116 (2) ◽  
pp. 297-307 ◽  
Author(s):  
G.N. Serbedzija ◽  
M. Bronner-Fraser ◽  
S.E. Fraser

The spatial and temporal aspects of cranial neural crest cell migration in the mouse are poorly understood because of technical limitations. No reliable cell markers are available and vital staining of embryos in culture has had limited success because they develop normally for only 24 hours. Here, we circumvent these problems by combining vital dye labelling with exo utero embryological techniques. To define better the nature of cranial neural crest cell migration in the mouse embryo, premigratory cranial neural crest cells were labelled by injecting DiI into the amniotic cavity on embryonic day 8. Embryos, allowed to develop an additional 1 to 5 days exo utero in the mother before analysis, showed distinct and characteristic patterns of cranial neural crest cell migration at the different axial levels. Neural crest cells arising at the level of the forebrain migrated ventrally in a contiguous stream through the mesenchyme between the eye and the diencephalon. In the region of the midbrain, the cells migrated ventrolaterally as dispersed cells through the mesenchyme bordered by the lateral surface of the mesencephalon and the ectoderm. At the level of the hindbrain, neural crest cells migrated ventrolaterally in three subectodermal streams that were segmentally distributed. Each stream extended from the dorsal portion of the neural tube into the distal portion of the adjacent branchial arch. The order in which cranial neural crest cells populate their derivatives was determined by labelling embryos at different stages of development. Cranial neural crest cells populated their derivatives in a ventral-to-dorsal order, similar to the pattern observed at trunk levels. In order to confirm and extend the findings obtained with exo utero embryos, DiI (1,1-dioctadecyl-3,3,3′,3′-tetramethylindo-carbocyanine perchlorate) was applied focally to the neural folds of embryos, which were then cultured for 24 hours. Because the culture technique permitted increased control of the timing and location of the DiI injection, it was possible to determine the duration of cranial neural crest cell emigration from the neural tube. Cranial neural crest cell emigration from the neural folds was completed by the 11-somite stage in the region of the rostral hindbrain, the 14-somite stage in the regions of the midbrain and caudal hindbrain and not until the 16-somite stage in the region of the forebrain. At each level, the time between the earliest and latest neural crest cells to emigrate from the neural tube appeared to be 9 hours.(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document