scholarly journals Southern Chinese populations harbour non-nucleatum Fusobacteria possessing homologues of the colorectal cancer-associated FadA virulence factor

Gut ◽  
2020 ◽  
Vol 69 (11) ◽  
pp. 1998-2007 ◽  
Author(s):  
Yun Kit Yeoh ◽  
Zigui Chen ◽  
Martin C S Wong ◽  
Mamie Hui ◽  
Jun Yu ◽  
...  

ObjectiveFusobacteria are not common nor relatively abundant in non-colorectal cancer (CRC) populations, however, we identified multiple Fusobacterium taxa nearly absent in western and rural populations to be comparatively more prevalent and relatively abundant in southern Chinese populations. We investigated whether these represented known or novel lineages in the Fusobacterium genus, and assessed their genomes for features implicated in development of cancer.MethodsPrevalence and relative abundances of fusobacterial species were calculated from 3157 CRC and non-CRC gut metagenomes representing 16 populations from various biogeographies. Microbial genomes were assembled and compared with existing reference genomes to assess novel fusobacterial diversity. Phylogenetic distribution of virulence genes implicated in CRC was investigated.ResultsIrrespective of CRC disease status, southern Chinese populations harboured increased prevalence (maximum 39% vs 7%) and relative abundances (average 0.4% vs 0.04% of gut community) of multiple recognised and novel fusobacterial taxa phylogenetically distinct from Fusobacterium nucleatum. Genomes assembled from southern Chinese gut metagenomes increased existing fusobacterial diversity by 14.3%. Homologues of the FadA adhesin linked to CRC were consistently detected in several monophyletic lineages sister to and inclusive of F. varium and F. ulcerans, but not F. mortiferum. We also detected increased prevalence and relative abundances of F. varium in CRC compared with non-CRC cohorts, which together with distribution of FadA homologues supports a possible association with gut disease.ConclusionThe proportion of fusobacteria in guts of southern Chinese populations are higher compared with several western and rural populations in line with the notion of environment/biogeography driving human gut microbiome composition. Several non-nucleatum taxa possess FadA homologues and were enriched in CRC cohorts; whether this imposes a risk in developing CRC and other gut diseases deserves further investigation.

2019 ◽  
Author(s):  
Shujie Chen ◽  
Tingting Su ◽  
Ying Zhang ◽  
Allen Lee ◽  
Jiamin He ◽  
...  

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Aref Shariati ◽  
Shabnam Razavi ◽  
Ehsanollah Ghaznavi-Rad ◽  
Behnaz Jahanbin ◽  
Abolfazl Akbari ◽  
...  

Abstract Background and aim Recent studies have proposed that commensal bacteria might be involved in the development and progression of gastrointestinal disorders such as colorectal cancer (CRC). Therefore, in this study, the relative abundance of Fusobacterium nucleatum, Bacteroides fragilis, Streptococcus bovis/gallolyticus, and Enteropathogenic Escherichia coli (EPEC) in CRC tissues, and their association with clinicopathologic characteristics of CRC was investigated in Iranian patients. Moreover, the role of these bacteria in the CRC-associated mutations including PIK3CA, KRAS, and BRAF was studied. Method To these ends, the noted bacteria were quantified in paired tumors and normal tissue specimens of 30 CRC patients, by TaqMan quantitative Real-Time Polymerase Chain Reaction (qPCR). Next, possible correlations between clinicopathologic factors and mutations in PIK3CA, KRAS, and BRAF genes were analyzed. Results In studied samples, B. fragilis was the most abundant bacteria that was detected in 66 and 60% of paired tumor and normal samples, respectively. Furthermore, 15% of the B. fragilis-positive patients were infected with Enterotoxigenic B. fragilis (ETBF) in both adenocarcinoma and matched adjacent normal samples. F. nucleatum was also identified in 23% of tumors and 13% of adjacent normal tissue samples. Moreover, the relative abundance of these bacteria determined by 2-ΔCT was significantly higher in CRC samples than in adjacent normal mucosa (p < 0.05). On the other hand, our findings indicated that S. gallolyticus and EPEC, compared to adjacent normal mucosa, were not prevalent in CRC tissues. Finally, our results revealed a correlation between F. nucleatum-positive patients and the KRAS mutation (p = 0.02), while analyses did not show any association between bacteria and mutation in PIK3CA and BRAF genes. Conclusion The present study is the first report on the analysis of different bacteria in CRC tissue samples of Iranian patients. Our findings revealed that F. nucleatum and B. fragilis might be linked to CRC. However, any link between gut microbiome dysbiosis and CRC remains unknown.


Author(s):  
H. Cuellar-Gómez ◽  
M.E. Ocharán-Hernández ◽  
C.C. Calzada-Mendoza ◽  
D.A. Comoto-Santacruz

mSystems ◽  
2018 ◽  
Vol 3 (3) ◽  
Author(s):  
Ce Yuan ◽  
Michael B. Burns ◽  
Subbaya Subramanian ◽  
Ran Blekhman

ABSTRACT Although variation in gut microbiome composition has been linked with colorectal cancer (CRC), the factors that mediate the interactions between CRC tumors and the microbiome are poorly understood. MicroRNAs (miRNAs) are known to regulate CRC progression and are associated with patient survival outcomes. In addition, recent studies suggested that host miRNAs can also regulate bacterial growth and influence the composition of the gut microbiome. Here, we investigated the association between miRNA expression and microbiome composition in human CRC tumor and normal tissues. We identified 76 miRNAs as differentially expressed (DE) in tissue from CRC tumors and normal tissue, including the known oncogenic miRNAs miR-182, miR-503, and mir-17~92 cluster. These DE miRNAs were correlated with the relative abundances of several bacterial taxa, including Firmicutes , Bacteroidetes , and Proteobacteria . Bacteria correlated with DE miRNAs were enriched with distinct predicted metabolic categories. Additionally, we found that miRNAs that correlated with CRC-associated bacteria are predicted to regulate targets that are relevant for host-microbiome interactions and highlight a possible role for miRNA-driven glycan production in the recruitment of pathogenic microbial taxa. Our work characterized a global relationship between microbial community composition and miRNA expression in human CRC tissues. IMPORTANCE Recent studies have found an association between colorectal cancer (CRC) and the gut microbiota. One potential mechanism by which the microbiota can influence host physiology is through affecting gene expression in host cells. MicroRNAs (miRNAs) are small noncoding RNA molecules that can regulate gene expression and have important roles in cancer development. Here, we investigated the link between the gut microbiota and the expression of miRNA in CRC. We found that dozens of miRNAs are differentially regulated in CRC tumors and adjacent normal colon and that these miRNAs are correlated with the abundance of microbes in the tumor microenvironment. Moreover, we found that microbes that have been previously associated with CRC are correlated with miRNAs that regulate genes related to interactions with microbes. Notably, these miRNAs likely regulate glycan production, which is important for the recruitment of pathogenic microbial taxa to the tumor. This work provides a first systems-level map of the association between microbes and host miRNAs in the context of CRC and provides targets for further experimental validation and potential interventions.


Tumor Biology ◽  
2015 ◽  
Vol 36 (9) ◽  
pp. 7325-7325
Author(s):  
Ming Ma ◽  
Guo-Jiang Jin ◽  
Ke Yun ◽  
Run-Qing Mu ◽  
Min Zhao ◽  
...  

Author(s):  
Chun‑Ting Ma ◽  
He‑Sheng Luo ◽  
Feng Gao ◽  
Qin‑Cai Tang ◽  
Wei Chen

2019 ◽  
Vol 5 (3) ◽  
pp. 178-187 ◽  
Author(s):  
Chun-Hui Sun ◽  
Bin-Bin Li ◽  
Bo Wang ◽  
Jing Zhao ◽  
Xiao-Ying Zhang ◽  
...  

2017 ◽  
Vol 53 (4) ◽  
pp. 517-524 ◽  
Author(s):  
Yuko Yamaoka ◽  
Yutaka Suehiro ◽  
Shinichi Hashimoto ◽  
Tomomi Hoshida ◽  
Michiyo Fujimoto ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-8 ◽  
Author(s):  
Xia Liu ◽  
Yiwen Cheng ◽  
Li Shao ◽  
Zongxin Ling

Growing evidence indicated that the gut microbiota was the intrinsic and essential component of the cancer microenvironment, which played vital roles in the development and progression of colorectal cancer (CRC). In our present study, we investigated the alterations of fecal abundant microbiota with real-time quantitative PCR and the changes of indicators of gut mucosal barrier from 53 early-stage CRC patients and 45 matched healthy controls. We found that the traditional beneficial bacteria such as Lactobacillus and Bifidobacterium decreased significantly and the carcinogenic bacteria such as Enterobacteriaceae and Fusobacterium nucleatum were significantly increased in CRC patients. We also found gut mucosal barrier dysfunction in CRC patients with increased levels of endotoxin (LPS), D-lactate, and diamine oxidase (DAO). With Pearson’s correlation analysis, D-lactate, LPS, and DAO were correlated negatively with Lactobacillus and Bifidobacterium and positively with Enterobacteriaceae and F. nucleatum. Our present study found dysbiosis of the fecal microbiota and dysfunction of the gut mucosal barrier in patients with early-stage CRC, which implicated that fecal abundant bacteria and gut mucosal barrier indicators could be used as targets to monitor the development and progression of CRC in a noninvasive and dynamic manner.


Sign in / Sign up

Export Citation Format

Share Document