scholarly journals Efficient elimination of primary B-ALL cells in vitro and in vivo using a novel 4-1BB-based CAR targeting a membrane-distal CD22 epitope

2020 ◽  
Vol 8 (2) ◽  
pp. e000896
Author(s):  
Talia Velasco-Hernandez ◽  
Samanta Romina Zanetti ◽  
Heleia Roca-Ho ◽  
Francisco Gutierrez-Aguera ◽  
Paolo Petazzi ◽  
...  

BackgroundThere are few therapeutic options available for patients with B-cell acute lymphoblastic leukemia (B-ALL) relapsing as CD19– either after chemotherapy or CD19-targeted immunotherapies. CD22-chimeric antigen receptor (CAR) T cells represent an attractive addition to CD19-CAR T cell therapy because they will target both CD22+CD19– B-ALL relapses and CD19– preleukemic cells. However, the immune escape mechanisms from CD22-CAR T cells, and the potential contribution of the epitope binding of the anti-CD22 single-chain variable fragment (scFv) remain understudied.MethodsHere, we have developed and comprehensively characterized a novel CD22-CAR (clone hCD22.7) targeting a membrane-distal CD22 epitope and tested its cytotoxic effects against B-ALL cells both in in vitro and in vivo assays.ResultsConformational epitope mapping, cross-blocking, and molecular docking assays revealed that the hCD22.7 scFv is a high-affinity binding antibody which specifically binds to the ESTKDGKVP sequence, located in the Ig-like V-type domain, the most distal domain of CD22. We observed efficient killing of B-ALL cells in vitro, although the kinetics were dependent on the level of CD22 expression. Importantly, we show an efficient in vivo control of patients with B-ALL derived xenografts with diverse aggressiveness, coupled to long-term hCD22.7-CAR T cell persistence. Remaining leukemic cells at sacrifice maintained full expression of CD22, ruling out CAR pressure-mediated antigen loss. Finally, the immunogenicity capacity of this hCD22.7-scFv was very similar to that of other CD22 scFv previously used in adoptive T cell therapy.ConclusionsWe report a novel, high-affinity hCD22.7 scFv which targets a membrane-distal epitope of CD22. 4-1BB-based hCD22.7-CAR T cells efficiently eliminate clinically relevant B- CD22high and CD22low ALL primary samples in vitro and in vivo. Our study supports the clinical translation of this hCD22.7-CAR as either single or tandem CD22–CD19-CAR for both naive and anti-CD19-resistant patients with B-ALL.

2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A133-A133
Author(s):  
Cheng-Fu Kuo ◽  
Yi-Chiu Kuo ◽  
Miso Park ◽  
Zhen Tong ◽  
Brenda Aguilar ◽  
...  

BackgroundMeditope is a small cyclic peptide that was identified to bind to cetuximab within the Fab region. The meditope binding site can be grafted onto any Fab framework, creating a platform to uniquely and specifically target monoclonal antibodies. Here we demonstrate that the meditope binding site can be grafted onto chimeric antigen receptors (CARs) and utilized to regulate and extend CAR T cell function. We demonstrate that the platform can be used to overcome key barriers to CAR T cell therapy, including T cell exhaustion and antigen escape.MethodsMeditope-enabled CARs (meCARs) were generated by amino acid substitutions to create binding sites for meditope peptide (meP) within the Fab tumor targeting domain of the CAR. meCAR expression was validated by anti-Fc FITC or meP-Alexa 647 probes. In vitro and in vivo assays were performed and compared to standard scFv CAR T cells. For meCAR T cell proliferation and dual-targeting assays, the meditope peptide (meP) was conjugated to recombinant human IL15 fused to the CD215 sushi domain (meP-IL15:sushi) and anti-CD20 monoclonal antibody rituximab (meP-rituximab).ResultsWe generated meCAR T cells targeting HER2, CD19 and HER1/3 and demonstrate the selective specific binding of the meditope peptide along with potent meCAR T cell effector function. We next demonstrated the utility of a meP-IL15:sushi for enhancing meCAR T cell proliferation in vitro and in vivo. Proliferation and persistence of meCAR T cells was dose dependent, establishing the ability to regulate CAR T cell expansion using the meditope platform. We also demonstrate the ability to redirect meCAR T cells tumor killing using meP-antibody adaptors. As proof-of-concept, meHER2-CAR T cells were redirected to target CD20+ Raji tumors, establishing the potential of the meditope platform to alter the CAR specificity and overcome tumor heterogeneity.ConclusionsOur studies show the utility of the meCAR platform for overcoming key challenges for CAR T cell therapy by specifically regulating CAR T cell functionality. Specifically, the meP-IL15:sushi enhanced meCAR T cell persistence and proliferation following adoptive transfer in vivo and protects against T cell exhaustion. Further, meP-ritiuximab can redirect meCAR T cells to target CD20-tumors, showing the versatility of this platform to address the tumor antigen escape variants. Future studies are focused on conferring additional ‘add-on’ functionalities to meCAR T cells to potentiate the therapeutic effectiveness of CAR T cell therapy.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 41-42
Author(s):  
M. Eric Kohler ◽  
Zachary Walsh ◽  
Kole Degolier ◽  
Terry J. Fry

The advent of chimeric antigen receptor (CAR) T cell therapy has revolutionized the treatment of relapsed/refractory acute lymphoblastic leukemia (r/r ALL). CD19 directed CAR T cells have demonstrated the ability to induce complete remissions in up to 90% of r/r ALL patients. Despite this remarkable upfront success, relapse after CAR T cell therapy remains a major obstacle to long term remissions. A major mechanism for relapse after CD19-directed CAR T cell therapy is the recurrence of antigen-negative ALL cells. In recent years, CD22 CAR T cell therapy has emerged as an effective salvage therapy for patients with CD19-negative ALL. In a phase I clinical trial, CD22 CAR T cells were able to induce remission in up to 80% of patients with CD19-negative ALL. Patients achieving remission, who did not undergo a consolidative hematopoietic stem cell transplant, were found to be at high risk of relapse due to downregulation of the CD22 antigen below the threshold required for effective CD22 CAR T cell activity. Thus, strategies to increase the antigen-sensitivity of CD22 CAR T cells have the potential to enhance the induction and duration of remission in ALL patients. As the properties of a CAR that influence sensitivity to antigen are not well defined, we began by testing the impact of increasing the affinity of the single-chain fragment variable (scFv) for the CD22 antigen. T cells from healthy donors were activated and transduced with a second-generation, 4-1BB CAR containing either the standard affinity (SA)-m971 scFv used in the prior clinical trial, or a high affinity (HA) scFv generated by affinity maturation of the m971 scFv. SA- and HA-CD22 CAR T cells were evaluated in vitro and in vivo against clones of the pre-B ALL cell line, NALM6, which express CD22 at wild type levels (CD22WT), sub-physiologic levels (CD22Lo), supra-physiologic levels (CD22Hi) or in which CD22 was deleted (CD22Neg). We found that the amount of CD22 expressed on the leukemia cells resulted in dose-dependent expression of activation markers, such as CD69 and CD25 (p<0.05) on CD22 CAR T cells. Similarly, CAR T cell functions, such as the secretion of interferon-gamma (IFNg, p<0.0001) and interleukin-2 (IL-2, p<0.0001) as well as cytotoxic degranulation (p<0.0001) were all significantly impacted by the amount of CD22 on the surface of NALM6. A similar pattern of antigenic dose-response was seen in the signaling of CAR T cells, with phosphorylation of ERK reflecting the level of CD22 antigen (p<0.001) and correlating with the increased in vivo efficacy of the CAR T cells against CD22WT NALM6, relative to CD22Lo NALM6. Increasing the affinity of the CD22 CAR did not impact the in vivo efficacy against CD22WT NALM6 at either a therapeutic or subtherapeutic dose, however, HA-CD22 CAR T cells significantly prolonged the survival of NSG mice with CD22Lo NALM6, relative to SA-CD22 CAR T cells (p<0.01). The enhanced activity of HA-CD22 CAR T cells against CD22Lo leukemia did not correlate with improved in vitro functionality, as the HA-CD22 CAR T cells surprisingly demonstrated lower IL-2 secretion (p<0.01), lower proliferation (p<0.05) and diminished in vitro lysis of CD22Lo NALM6 (p<0.05), relative to SA-CD22 CAR T cells. ERK phosphorylation, however, was significantly increased in HA-CD22 CAR T cells (p<0.01) and was the only in vitro marker which correlated with the enhanced in vivo activity seen with the affinity-matured CAR. Previous clinical experience has demonstrated the importance of using a short linker (consisting of a single G4S sequence) between the heavy and light chains of the m971 scFv, therefore we next evaluated the impact of linker length on the activity of the HA-CD22 CAR. HA-CD22 CARs were generated with either a short- or long-linker (G4S x1 vs G4S x3, respectively) and evaluated in vitro and in vivo. While the short linker improved proliferation in vitro, there was no significant impact of linker length on cytokine production or lysis of CD22Lo NALM6. In a xenograft model, HA-CD22 CAR T cells with the long-linker demonstrated slower progression of CD22Lo leukemia and significantly prolonged survival of NSG mice with CD22WT leukemia relative to HA-CD22 CAR T cells with the short-linker (p<0.01). Taken together, these studies suggest that increasing the affinity of a scFv is a promising strategy for enhancing CAR sensitivity to low levels of target antigen, with the potential to decrease post-CAR T cell relapses due to antigen downregulation. Disclosures No relevant conflicts of interest to declare.


BMC Cancer ◽  
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Lena Andersch ◽  
Josefine Radke ◽  
Anika Klaus ◽  
Silke Schwiebert ◽  
Annika Winkler ◽  
...  

Abstract Background Chimeric antigen receptor (CAR)-based T cell therapy is in early clinical trials to target the neuroectodermal tumor, neuroblastoma. No preclinical or clinical efficacy data are available for retinoblastoma to date. Whereas unilateral intraocular retinoblastoma is cured by enucleation of the eye, infiltration of the optic nerve indicates potential diffuse scattering and tumor spread leading to a major therapeutic challenge. CAR-T cell therapy could improve the currently limited therapeutic strategies for metastasized retinoblastoma by simultaneously killing both primary tumor and metastasizing malignant cells and by reducing chemotherapy-related late effects. Methods CD171 and GD2 expression was flow cytometrically analyzed in 11 retinoblastoma cell lines. CD171 expression and T cell infiltration (CD3+) was immunohistochemically assessed in retrospectively collected primary retinoblastomas. The efficacy of CAR-T cells targeting the CD171 and GD2 tumor-associated antigens was preclinically tested against three antigen-expressing retinoblastoma cell lines. CAR-T cell activation and exhaustion were assessed by cytokine release assays and flow cytometric detection of cell surface markers, and killing ability was assessed in cytotoxic assays. CAR constructs harboring different extracellular spacer lengths (short/long) and intracellular co-stimulatory domains (CD28/4-1BB) were compared to select the most potent constructs. Results All retinoblastoma cell lines investigated expressed CD171 and GD2. CD171 was expressed in 15/30 primary retinoblastomas. Retinoblastoma cell encounter strongly activated both CD171-specific and GD2-specific CAR-T cells. Targeting either CD171 or GD2 effectively killed all retinoblastoma cell lines examined. Similar activation and killing ability for either target was achieved by all CAR constructs irrespective of the length of the extracellular spacers and the co-stimulatory domain. Cell lines differentially lost tumor antigen expression upon CAR-T cell encounter, with CD171 being completely lost by all tested cell lines and GD2 further down-regulated in cell lines expressing low GD2 levels before CAR-T cell challenge. Alternating the CAR-T cell target in sequential challenges enhanced retinoblastoma cell killing. Conclusion Both CD171 and GD2 are effective targets on human retinoblastoma cell lines, and CAR-T cell therapy is highly effective against retinoblastoma in vitro. Targeting of two different antigens by sequential CAR-T cell applications enhanced tumor cell killing and preempted tumor antigen loss in preclinical testing.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiaojuan Shi ◽  
Daiqun Zhang ◽  
Feng Li ◽  
Zhen Zhang ◽  
Shumin Wang ◽  
...  

AbstractAsparagine-linked (N-linked) glycosylation is ubiquitous and can stabilize immune inhibitory PD-1 protein. Reducing N-linked glycosylation of PD-1 may decrease PD-1 expression and relieve its inhibitory effects on CAR-T cells. Considering that the codon of Asparagine is aac or aat, we wondered if the adenine base editor (ABE), which induces a·t to g·c conversion at specific site, could be used to reduce PD-1 suppression by changing the glycosylated residue in CAR-T cells. Our results showed ABE editing altered the coding sequence of N74 residue of PDCD1 and downregulated PD-1 expression in CAR-T cells. Further analysis showed ABE-edited CAR-T cells had enhanced cytotoxic functions in vitro and in vivo. Our study suggested that the single base editors can be used to augment CAR-T cell therapy.


2021 ◽  
Vol 288 (1947) ◽  
Author(s):  
Gregory J. Kimmel ◽  
Frederick L. Locke ◽  
Philipp M. Altrock

Chimeric antigen receptor (CAR) T cell therapy is a remarkably effective immunotherapy that relies on in vivo expansion of engineered CAR T cells, after lymphodepletion (LD) by chemotherapy. The quantitative laws underlying this expansion and subsequent tumour eradication remain unknown. We develop a mathematical model of T cell–tumour cell interactions and demonstrate that expansion can be explained by immune reconstitution dynamics after LD and competition among T cells. CAR T cells rapidly grow and engage tumour cells but experience an emerging growth rate disadvantage compared to normal T cells. Since tumour eradication is deterministically unstable in our model, we define cure as a stochastic event, which, even when likely, can occur at variable times. However, we show that variability in timing is largely determined by patient variability. While cure events impacted by these fluctuations occur early and are narrowly distributed, progression events occur late and are more widely distributed in time. We parameterized our model using population-level CAR T cell and tumour data over time and compare our predictions with progression-free survival rates. We find that therapy could be improved by optimizing the tumour-killing rate and the CAR T cells' ability to adapt, as quantified by their carrying capacity. Our tumour extinction model can be leveraged to examine why therapy works in some patients but not others, and to better understand the interplay of deterministic and stochastic effects on outcomes. For example, our model implies that LD before a second CAR T injection is necessary.


Cancers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 139 ◽  
Author(s):  
Jing Cui ◽  
Herui Wang ◽  
Rogelio Medina ◽  
Qi Zhang ◽  
Chen Xu ◽  
...  

Chimeric antigen receptor (CAR)-engineered T cells represent a promising modality for treating glioblastoma. Recently, we demonstrated that CAR-T cells targeting carbonic anhydrase IX (CAIX), a protein involved in HIF-1a hypoxic signaling, is a promising CAR-T cell target in an intracranial murine glioblastoma model. Anti-CAIX CAR-T cell therapy is limited by its suboptimal activation within the tumor microenvironment. LB-100, a small molecular inhibitor of protein phosphatase 2A (PP2A), has been shown to enhance T cell anti-tumor activity through activation of the mTOR signaling pathway. Herein, we investigated if a treatment strategy consisting of a combination of LB-100 and anti-CAIX CAR-T cell therapy produced a synergistic anti-tumor effect. Our studies demonstrate that LB-100 enhanced anti-CAIX CAR-T cell treatment efficacy in vitro and in vivo. Our findings demonstrate the role of LB-100 in augmenting the cytotoxic activity of anti-CAIX CAR-T cells and underscore the synergistic therapeutic potential of applying combination LB-100 and CAR-T Cell therapy to other solid tumors.


2021 ◽  
Vol 16 ◽  
Author(s):  
Vikas Maharshi ◽  
Diksha Diksha ◽  
Pooja Gupta

Background: Serious adverse reactions have been reported with the use of chimeric antigen receptor (CAR) T-cell therapy in clinical setting despite the success of these products in pre-clinical stages of development. Objective: We evaluated the quality of available pre-clinical safety data of CAR T-cell therapy products. Methods: A 21 items safety-checklist was designed specifically for CAR T-cell. Literature was searched using search/MeSH terms in PubMed (October 2019 – February 2020). Studies were screened from title and abstract. Original pre-clinical researches related to CAR T-cell anti-cancer therapy were included. Results: Of the search results, 152 studies (3 in vivo, 39 in vitro, and 110 combined) were included. Only 7.9% studies were specifically designed to evaluate/ improve product safety. Eleven studies included target antigen(s) and no study included co-stimulatory molecule(s) expressed exclusively by tumor tissue and/or CAR T-cells. One study used CRISPR-Cas9 for CAR gene insertion. The use of switch-off mechanism and purity assessment of CAR T-cell products were reported in 13.2% and 8.6% studies respectively. Of the 149 studies with in vivo component, immuno-competent animal models were used in 24.8%. Measurement of blood pressure, temperature, body weight and serum cytokines were reported in 0, 2.7, 29.2 and 27.4% studies respectively. The tissue distribution and CAR T-cells persistence were reported in 26.5% studies. Conclusion: Majority of the checklist parameters were not reported in the pre-clinical publications to be adequately predictive of the safety of CAR T-cells in a clinical setting.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A135-A135
Author(s):  
Hee Jun Lee ◽  
Cody Cullen ◽  
John Murad ◽  
Jason Yang ◽  
Wen-Chung Chang ◽  
...  

BackgroundWhile chimeric antigen receptor (CAR) T cell therapy has shown impressive clinical efficacy for hematological malignancies,1 efficacy remains limited for solid tumors due in large part to the immunosuppressive tumor microenvironment.2 Tumor-associated glycoprotein 72 (TAG72) is an aberrantly glycosylated protein overexpressed on ovarian cancer3 and is an exciting target for CAR T cell immunotherapy. Our lab previously developed a second-generation TAG72 CAR T cell product and showed its potency against TAG72-expressing ovarian tumor cells both in vitro and in preclinical mouse models.4 We report here further modification of our TAG72 CAR T cells, with incorporation of interleukin-12 (IL-12) and interleukin-15 (IL-15), and evaluate the therapeutic benefits in peritoneal ovarian tumor models.MethodsIn this preclinical study, we build upon our earlier work with in vitro and in vivo evaluation of 9 different second-generation TAG72 CAR constructs varying in single-chain variable fragment, extracellular spacer, transmembrane, and intracellular co-stimulatory domains. We then engineer CAR T cells with two types of cytokines – IL-12 and IL-15 – and put these engineered cells against challenging in vivo tumor models.ResultsThrough in vitro and in vivo studies, we identify the most optimal construct with which we aim to evaluate in a phase 1 clinical trial targeting TAG72-positive ovarian cancer in 2021. Despite thorough optimizations to the CAR backbone, CAR T cells can be additionally engineered for improved anti-tumor response. Therefore, we further engineered CAR T cells with IL-12 or IL-15 production that greatly improves the effectiveness of TAG72-CAR T cells in difficult-to-treat in vivo tumor models. We observed that modification of CAR T cells with IL-15 displayed toxicity when regionally delivered in vivo, yet introduction of IL-12 not only demonstrated safe and superior therapeutic responses, but also allowed the regional administration of CAR T cells to address systemic disease. We are now expanding these findings by evaluating these therapies using syngeneic immunocompetent mouse tumor models.ConclusionsThe tumor microenvironment (TME) harbors various factors that thwart the killing of tumor cells by CAR T cells. Thus, CAR T cells will likely require further engineering to overcome this barrier. We show that amplifying cytokine pathways is one way to overcome the TME and improve the efficacy of CAR T cell therapy for solid tumors.ReferencesMaude SL, Teachey DT, Porter DL, Grupp SA. CD19-targeted chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Blood 2015 Jun 25;125(26):4017–23.Priceman SJ, Forman SJ, Brown CE. Smart CARs engineered for cancer immunotherapy. Curr Opin Oncol 2015 Nov;27(6):466–74.Chauhan SC, Vinayek N, Maher DM, Bell MC, Dunham KA, Koch MD, Lio Y, Jaggi M. Combined Staining of TAG-72, MUC1, and CA125 Improves Labeling Sensitivity in Ovarian Cancer: Antigens for Multi-targeted Antibody-guided Therapy. J Histochem Cytochem 2007 Aug;55(8):867–75.Murad JP, Kozlowska AK, Lee HJ, Ramamurthy M, Chang WC, Yazaki P, Colcher D, Shively J, Cristea M, Forman SJ, Priceman SJ. Effective Targeting of TAG72+ Peritoneal Ovarian Tumors via Regional Delivery of CAR-Engineered T Cells. Front Immunol 2018 Nov 19;9:2268.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yamin Jie ◽  
Guijun Liu ◽  
Lina Feng ◽  
Ying Li ◽  
Mingyan E ◽  
...  

In spite of impressive success in treating hematologic malignancies, adoptive therapy with chimeric antigen receptor modified T cells (CAR T) has not yet been effective in solid tumors, where identification of suitable tumor-specific antigens remains a major obstacle for CAR T-cell therapy due to the “on target off tumor” toxicity. Protein tyrosine kinase 7 (PTK7) is a member of the Wnt-related pseudokinases and identified as a highly expressed antigen enriched in cancer stem cells (CSCs) from multiple solid tumors, including but not limited to triple-negative breast cancer, non-small-cell lung cancer, and ovarian cancer, suggesting it may serve as a promising tumor-specific target for CAR T-cell therapy. In this study, we constructed three different PTK7-specific CAR (PTK7-CAR1/2/3), each comprising a humanized PTK7-specific single-chain variable fragment (scFv), hinge and transmembrane (TM) regions of the human CD8α molecule, 4-1BB intracellular co-stimulatory domain (BB-ICD), and CD3ζ intracellular domain (CD3ζ-ICD) sequence, and then prepared the CAR T cells by lentivirus-mediated transduction of human activated T cells accordingly, and we sequentially evaluated their antigen-specific recognition and killing activity in vitro and in vivo. T cells transduced with all three PTK7-CAR candidates exhibited antigen-specific cytokine production and potent cytotoxicity against naturally expressing PTK7-positive tumor cells of multiple cancer types without mediating cytotoxicity of a panel of normal primary human cells; meanwhile, in vitro recursive cytotoxicity assays demonstrated that only PTK7-CAR2 modified T cells retained effective through multiple rounds of tumor challenge. Using in vivo xenograft models of lung cancers with different expression levels of PTK7, systemic delivery of PTK7-CAR2 modified T cells significantly prevented tumor growth and prolonged overall survival of mice. Altogether, our results support PTK7 as a therapeutic target suitable for CAR T-cell therapy that could be applied for lung cancers and many other solid cancers with PTK7 overexpression.


2020 ◽  
Author(s):  
Yamin Jie ◽  
Guijun Liu ◽  
Lina Feng ◽  
Ying Li ◽  
Mingyan E ◽  
...  

Abstract Background: In spite of impressive success in treating hematologic malignancies, adoptive therapy with chimeric antigen receptor modified T cells (CAR T) has not yet been effective in solid tumors, where identification of suitable tumor-specific antigens remains a major obstacle for CAR T-cell therapy due to the “on target off tumor” toxicity. Protein tyrosine kinase 7 (PTK7) is a member of the Wnt-related pseudokinases and identified as a highly expressed antigen enriched in cancer stem cells (CSCs) from multiple solid tumors, including but not limited to triple-negative breast cancer, non-small cell lung cancer, and ovarian cancer, suggesting it may serve as a promising tumor-specific target for CAR T-cell therapy. Methods: In this study, we constructed 3 different PTK7-specific CAR (PTK7-CAR1/2/3) each comprising a humanized PTK7-specific single chain variable fragment (scFv), hinge and transmembrane (TM) regions of the human CD8α molecule, 4-1BB intracellular co-stimulatory domain (BB-ICD), and CD3ζ intracellular domain (CD3ζ-ICD) sequence, and then prepared the CAR T cells by lentivirus mediated transduction of human activated T cells accordingly, and sequentially evaluated their antigen-specific recognition and killing activity in vitro and in vivo.Results: T cells transduced with all 3 PTK7-CAR candidates exhibited antigen-specific cytokine production and potent cytotoxicity against naturally expressing PTK7-positive tumor cells of multiple cancer types without mediating cytotoxicity of a panel of normal primary human cells; meanwhile, in vitro recursive cytotoxicity assays demonstrated that only PTK7-CAR2 modified T cells retained effective through multiple rounds of tumor challenge. Using in vivo xenograft models of lung cancers with different expression level of PTK7, systemic delivery of PTK7-CAR2 modified T cells significantly prevented tumor growth and prolonged overall survival of mice. Conclusion: Altogether, our results support PTK7 as a therapeutic target suitable for CAR T-cell therapy that could be applied for lung cancers and many other solid cancers with PTK7 overexpression.


Sign in / Sign up

Export Citation Format

Share Document