scholarly journals Management of a patient with mantle cell lymphoma who developed severe neurotoxicity after chimeric antigen receptor T-cell therapy in ZUMA-2

2020 ◽  
Vol 8 (2) ◽  
pp. e001114 ◽  
Author(s):  
Michael Wang ◽  
Preetesh Jain ◽  
T Linda Chi ◽  
Sheree E Chen ◽  
Amy Heimberger ◽  
...  

Cerebral edema following chimeric antigen receptor (CAR) T-cell therapy can be fatal. ZUMA-2 is a pivotal phase 2, multicenter study evaluating KTE-X19, an autologous anti-CD19 CAR T-cell therapy, in relapsed/refractory mantle cell lymphoma. We describe a 65-year-old patient in ZUMA-2 who developed cerebral edema following CAR T-cell therapy and had complete recovery after multimodality clinical intervention including rabbit antithymocyte globulin (ATG). Biomarker results show early and robust CAR T-cell expansion and related induction of inflammatory cytokines, followed by rapid declines in CAR T-cell and proinflammatory cytokine levels after ATG administration. This clinical profile highlights a potential relevance of ATG in treating severe CAR T-cell-related neurotoxicity.

2021 ◽  
Vol 161 ◽  
pp. S894-S895
Author(s):  
N. Figura ◽  
A. Sim ◽  
S. Dahiya ◽  
F. Lutfi ◽  
A. Rapoport ◽  
...  

2021 ◽  
Vol 19 (11.5) ◽  
pp. 1331-1333
Author(s):  
Mazyar Shadman

Mantle cell lymphoma remains incurable despite recent treatment advances, and most patients experience relapsed/refractory disease. BTK inhibitors are the preferred choice in the relapsed setting, especially in patients with early relapse. For patients with high-risk features such as TP53 mutation, early referral for CAR T-cell therapy should be considered, even in those with stable disease on a BTK inhibitor. Patients without high-risk features may be monitored and initiate CAR T-cell therapy after clinical disease progression. CAR T-cell therapy is an effective treatment with high rate of complete remissions. For patients who do not achieve a complete remission 3 months after CAR-T therapy, bridging therapy with chemotherapy or targeted therapy agents and referral for allogeneic transplant are recommended.


2020 ◽  
Vol 382 (14) ◽  
pp. 1331-1342 ◽  
Author(s):  
Michael Wang ◽  
Javier Munoz ◽  
Andre Goy ◽  
Frederick L. Locke ◽  
Caron A. Jacobson ◽  
...  

2021 ◽  
Vol In Press (In Press) ◽  
Author(s):  
Pouya Safarzadeh Kozani ◽  
Pooria Safarzadeh Kozani ◽  
Fatemeh Rahbarizadeh

: Chimeric antigen receptor (CAR) T-cell therapy has emerged as the revolutionary cancer treatment method in recent years due to the heartwarming clinical outcomes in several types of hematologic malignancies. Since 2017, the US Food and Drug Administration has approved four CAR T-cell products, including tisagenlecleucel [for B-cell acute lymphoblastic leukemia and diffuse large B-cell lymphoma (DLBCL)], axicabtagene ciloleucel (for DLBCL), brexucabtagene autoleucel (for mantle cell lymphoma), and lisocabtagene maraleucel (for DLBCL). The efficacy optimization and toxicity management methods of CAR T-cell therapy are among the most investigated fields of cancer immunotherapy. Furthermore, the favorable outcomes achieved by the aforementioned CAR T-cell products in hematologic malignancies have encouraged researchers to bring successful outcomes to solid tumor patients. This study aimed to highlight the outstanding characteristics and the manufacturing process of CAR T-cells and discuss the key lane leading to their clinically approved products.


Immunotherapy ◽  
2020 ◽  
Vol 12 (18) ◽  
pp. 1341-1357
Author(s):  
Nashwa El-Khazragy ◽  
Sherief Ghozy ◽  
Passant Emad ◽  
Mariam Mourad ◽  
Diaaeldeen Razza ◽  
...  

Taking advantage of the cellular immune system is the mainstay of the adoptive cell therapy, to induce recognition and destruction of cancer cells. The impressive demonstration of this principle is chimeric antigen receptor-modified T (CAR-T)-cell therapy, which had a major impact on treating relapsed and refractory hematological malignancies. Despite the great results of the CAR-T-cell therapy, many tumors are still able to avoid immune detection and further elimination, as well as the possible associated adverse events. Herein, we highlighted the recent advances in CAR-T-cell therapy, discussing their applications beneficial functions and side effects in hematological malignancies, illustrating the underlying challenges and opportunities. Furthermore, we provide an overview to overcome different obstacles using potential manufacture and treatment strategies.


Author(s):  
Javad Masoumi ◽  
Abdollah Jafarzadeh ◽  
Jalal Abdolalizadeh ◽  
Haroon Khan ◽  
Jeandet Philippe ◽  
...  

2021 ◽  
Vol 27 (3) ◽  
pp. S211-S212
Author(s):  
Eddie Stephens ◽  
Ansh Mehta ◽  
Tanya Persoon ◽  
Shannon Baker ◽  
Remy David ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1229
Author(s):  
Ali Hosseini Rad S. M. ◽  
Joshua Colin Halpin ◽  
Mojtaba Mollaei ◽  
Samuel W. J. Smith Bell ◽  
Nattiya Hirankarn ◽  
...  

Chimeric antigen receptor (CAR) T-cell therapy has revolutionized adoptive cell therapy with impressive therapeutic outcomes of >80% complete remission (CR) rates in some haematological malignancies. Despite this, CAR T cell therapy for the treatment of solid tumours has invariably been unsuccessful in the clinic. Immunosuppressive factors and metabolic stresses in the tumour microenvironment (TME) result in the dysfunction and exhaustion of CAR T cells. A growing body of evidence demonstrates the importance of the mitochondrial and metabolic state of CAR T cells prior to infusion into patients. The different T cell subtypes utilise distinct metabolic pathways to fulfil their energy demands associated with their function. The reprogramming of CAR T cell metabolism is a viable approach to manufacture CAR T cells with superior antitumour functions and increased longevity, whilst also facilitating their adaptation to the nutrient restricted TME. This review discusses the mitochondrial and metabolic state of T cells, and describes the potential of the latest metabolic interventions to maximise CAR T cell efficacy for solid tumours.


Sign in / Sign up

Export Citation Format

Share Document