scholarly journals HPV-16 E6/E7 DNA tattoo vaccination using genetically optimized vaccines elicit clinical and immunological responses in patients with usual vulvar intraepithelial neoplasia (uVIN): a phase I/II clinical trial

2021 ◽  
Vol 9 (8) ◽  
pp. e002547
Author(s):  
Noor Alida Maria Bakker ◽  
Jossie Rotman ◽  
Marc van Beurden ◽  
Henry J MAA Zijlmans ◽  
Maartje van Ruiten ◽  
...  

BackgroundUsual vulvar intraepithelial neoplasia (uVIN) is a premalignancy caused by persistent infection with high-risk types of human papillomavirus (HPV), mainly type 16. Even though different treatment modalities are available (eg, surgical excision, laser evaporation or topical application of imiquimod), these treatments can be mutilating, patients often have recurrences and 2%–8% of patients develop vulvar carcinoma. Therefore, immunotherapeutic strategies targeting the pivotal oncogenic HPV proteins E6 and E7 are being explored to repress carcinogenesis.MethodIn this phase I/II clinical trial, 14 patients with HPV16+ uVIN were treated with a genetically enhanced DNA vaccine targeting E6 and E7. Safety, clinical responses and immunogenicity were assessed. Patients received four intradermal HPV-16 E6/E7 DNA tattoo vaccinations, with a 2-week interval, alternating between both upper legs. Biopsies of the uVIN lesions were taken at screening and +3 months after last vaccination. Digital photography of the vulva was performed at every check-up until 12 months of follow-up for measurement of the lesions. HPV16-specific T-cell responses were measured in blood over time in ex vivo reactivity assays.ResultsVaccinations were well tolerated, although one grade 3 suspected unexpected serious adverse reaction was observed. Clinical responses were observed in 6/14 (43%) patients, with 2 complete responses and 4 partial responses (PR). 5/14 patients showed HPV-specific T-cell responses in blood, measured in ex vivo reactivity assays. Notably, all five patients with HPV-specific T-cell responses had a clinical response.ConclusionsOur results indicate that HPV-16 E6/E7 DNA tattoo vaccination is a biologically active and safe treatment strategy in patients with uVIN, and suggest that T-cell reactivity against the HPV oncogenes is associated with clinical benefit.Trial registration numberNTR4607.

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A438-A438
Author(s):  
Mara Shainheit ◽  
Devin Champagne ◽  
Gabriella Santone ◽  
Syukri Shukor ◽  
Ece Bicak ◽  
...  

BackgroundATLASTM is a cell-based bioassay that utilizes a cancer patient‘s own monocyte-derived dendritic cells and CD4+ and CD8+ T cells to screen their mutanome and identify neoantigens that elicit robust anti-tumor T cell responses, as well as, deleterious InhibigensTM.1 GEN-009, a personalized vaccine comprised of 4–20 ATLAS-identified neoantigens combined with Hiltonol®, harnesses the power of neoantigen-specific T cells to treat individuals with solid tumors. The safety and efficacy of GEN-009 is being assessed in a phase 1/2a clinical trial (NCT03633110).MethodsA cohort of 15 adults with solid tumors were enrolled in the study. During the screening period, patients received standard of care PD-1-based immunotherapies appropriate for their tumor type. Subsequently, patients were immunized with GEN-009 with additional doses administered at 3, 6, 12, and 24 weeks. Peripheral blood mononuclear cells (PBMCs) were collected at baseline, pre-vaccination (D1), as well as 29, 50, 92, and 176 days post first dose. Vaccine-induced immunogenicity and persistence were assessed by quantifying neoantigen-specific T cell responses in ex vivo and in vitro stimulation dual-analyte fluorospot assays. Polyfunctionality of neoantigen-specific T cells was evaluated by intracellular cytokine staining. Additionally, potential correlations between the ATLAS-identified profile and vaccine-induced immunogenicity were assessed.ResultsGEN-009 augmented T cell responses in 100% of evaluated patients, attributable to vaccine and not checkpoint blockade. Furthermore, neoantigen-induced secretion of IFNγ and/or TNFα by PBMCs, CD4+, and CD8+ T cells was observed in all patients. Responses were primarily from polyfunctional TEM cells and detectable in both CD4+ and CD8+ T cell subsets. Some patients had evidence of epitope spreading. Unique response patterns were observed for each patient with no apparent relationship between tumor types and time to emergence, magnitude or persistence of response. Ex vivo vaccine-induced immune responses were observed as early as 1 month, and in some cases, persisted for 176 days. Clinical efficacy possibly attributable to GEN-009 was observed in several patients, but no correlation has yet been identified with neoantigen number or magnitude of immune response.ConclusionsATLAS empirically identifies stimulatory neoantigens using the patient‘s own immune cells. GEN-009, which is comprised of personalized, ATLAS-identified neoantigens, elicits early, long-lasting and polyfunctional neoantigen-specific CD4+ and CD8+ T cell responses in individuals with advanced cancer. Several patients achieved clinical responses that were possibly attributable to vaccine; efforts are underway to explore T cell correlates of protection. These data support that GEN-009, in combination with checkpoint blockade, represents a unique approach to treat solid tumors.AcknowledgementsWe are grateful to the patients and their families who consented to participate in the GEN-009-101 clinical trial.Trial RegistrationNCT03633110Ethics ApprovalThis study was approved by Western Institutional Review Board, approval number 1-1078861-1. All subjects contributing samples provided signed individual informed consent.ReferenceDeVault V, Starobinets H, Adhikari S, Singh S, Rinaldi S, Classon B, Flechtner J, Lam H. Inhibigens, personal neoantigens that drive suppressive T cell responses, abrogate protection of therapeutic anti-tumor vaccines. J. Immunol 2020; 204(1 Supplement):91.15.


PLoS ONE ◽  
2012 ◽  
Vol 7 (5) ◽  
pp. e36651 ◽  
Author(s):  
Simon Jacobelli ◽  
Fedoua Sanaa ◽  
Micheline Moyal-Barracco ◽  
Monique Pelisse ◽  
Sophie Berville ◽  
...  

2004 ◽  
Vol 108 (6) ◽  
pp. 857-862 ◽  
Author(s):  
Richard W. Todd ◽  
Sally Roberts ◽  
Christopher H. Mann ◽  
David M. Luesley ◽  
Phillip H. Gallimore ◽  
...  

2021 ◽  
Vol 9 (5) ◽  
pp. e002254
Author(s):  
Meenal Sinha ◽  
Li Zhang ◽  
Sumit Subudhi ◽  
Brandon Chen ◽  
Jaqueline Marquez ◽  
...  

BackgroundSipuleucel-T is a US Food and Drug Administration-approved autologous cellular immunotherapy that improves survival in patients with metastatic castration-resistant prostate cancer (mCRPC). We examined whether administering ipilimumab after sipuleucel-T could modify immune and/or clinical responses to this treatment.MethodsA total of 50 patients with mCRPC were enrolled into a clinical trial (NCT01804465, ClinicalTrials.gov) where they received ipilimumab either immediately or delayed 3 weeks following completion of sipuleucel-T treatment. Blood was collected at various timepoints of the study. Luminex assay for anti-prostatic acid phosphatase (PAP) and anti-PA2024-specific serum immunoglobulin G (IgG) and ELISpot for interferon-γ (IFN-γ) production against PAP and PA2024 were used to assess antigen-specific B and T cell responses, respectively. Clinical response was defined as >30% reduction in serum prostate-specific antigen levels compared with pretreatment levels. The frequency and state of circulating immune cells were determined by mass cytometry by time-of-flight and statistical scaffold analysis.ResultsWe found the combination to be well tolerated with no unexpected adverse events occurring. The timing of ipilimumab did not significantly alter the rates of antigen-specific B and T cell responses, the primary endpoint of the clinical trial. Clinical responses were observed in 6 of 50 patients, with 3 having responses lasting longer than 3 months. The timing of ipilimumab did not significantly associate with clinical response or toxicity. The combination treatment did induce CD4 and CD8 T cell activation that was most pronounced with the immediate schedule. Lower frequencies of CTLA-4 positive circulating T cells, even prior to treatment, were associated with better clinical outcomes. Interestingly, these differences in CTLA-4 expression were associated with prior localized radiation therapy (RT) to the prostate or prostatic fossa. Prior radiation treatment was also associated with improved radiographic progression-free survival.ConclusionCombining CTLA-4 blockade with sipuleucel-T resulted in modest clinical activity. The timing of CTLA-4 blockade following sipuleucel-T did not alter antigen-specific responses. Clinical responses were associated with both lower baseline frequencies of CTLA-4 expressing T cells and a history of RT. Prior cancer therapy may therefore result in long-lasting immune changes that influence responsiveness to immunotherapy with sipuleucel-T and anti-CTLA-4.


2020 ◽  
Vol 217 (10) ◽  
Author(s):  
Kunal H. Bhatt ◽  
Michelle A. Neller ◽  
Sriganesh Srihari ◽  
Pauline Crooks ◽  
Lea Lekieffre ◽  
...  

Cellular immunotherapeutics targeting the human papillomavirus (HPV)–16 E6 and E7 proteins have achieved limited success in HPV-positive oropharyngeal cancer (OPC). Here we have conducted proteome-wide profiling of HPV-16–specific T cell responses in a cohort of 66 patients with HPV-associated OPC and 22 healthy individuals. Unexpectedly, HPV-specific T cell responses from OPC patients were not constrained to the E6 and E7 antigens; they also recognized E1, E2, E4, E5, and L1 proteins as dominant targets for virus-specific CD8+ and CD4+ T cells. Multivariate analysis incorporating tumor staging, treatment status, and smoking history revealed that treatment status had the most significant impact on HPV-specific CD8+ and CD4+ T cell immunity. Specifically, the breadth and overall strength of HPV-specific T cell responses were significantly higher before the commencement of curative therapy than after therapy. These data provide the first glimpse of the overall human T cell response to HPV in a clinical setting and offer groundbreaking insight into future development of cellular immunotherapies for HPV-associated OPC patients.


2019 ◽  
Vol 37 (15_suppl) ◽  
pp. e14307-e14307
Author(s):  
Ana Blazquez ◽  
Alex Rubinsteyn ◽  
Julia Kodysh ◽  
John Patrick Finnigan ◽  
Thomas Urban Marron ◽  
...  

e14307 Background: Mutation-derived tumor antigens (MTAs) arise as a direct result of somatic variations that occur during carcinogenesis and can be characterized via genetic sequencing and used to identify MTAs. We developed a platform for a fully-personalized MTA-based vaccine in the adjuvant treatment of solid and hematological malignancies. Methods: This is a single-arm, open label, proof-of-concept phase I study designed to test the safety and immunogenicity of Personalized Genomic Vaccine 001 (PGV001) that targets up to 10 predicted personal tumor neoantigens based on patient’s HLA profile (ClinicalTrials.gov: NCT02721043). Results: Patients who completed vaccination with PGV001_002 (head and neck squamous cell cancer) received 10 doses of vaccine comprising 10 long peptides (LP) combined with poly-ICLC (toll-like receptor-3 agonist) intradermally. Vaccine-induced T-cell responses were determined at weeks 0 and 27 (before and after treatment, respectively), ex vivo by interferon (IFN)-g enzyme-linked immunospot assay and after expansion by intracellular cytokine staining. Overlapping 15-mer peptides (OLPs) spanning the entirety of each LP and 9-10-mer peptides corresponding to each predicted class I epitope (Min) were pooled. Ex vivo responses to these peptide pools were undetectable at week 0 but were evident at week 27 against 2 OLPs out of 10 (20%) and in 5 Min out of 10 (50%). After in vitro expansion, neoantigen-specific CD4+ and CD8+ T-cell responses were found in 5 out of 10 pooled peptides (50%). 7 out of 10 (70%) epitopes elicited polyfunctional T-cell responses (secretion of INF-g, TNF-a, and/or IL-2) from either CD4+ or CD8+ T cells. Conclusions: The PGV001 vaccine in our first patient showed both safety and immunogenicity, eliciting CD4+ and CD8+ responses to the vaccine peptides. As we enroll additional patients in this clinical trial, and perform deeper phenotyping of their tumor-reactive T cells, we will learn the determinants necessary for the successful generation of MTA-based vaccines, while informing future immunotherapeutic approaches and rational combinations. Clinical trial information: NCT02721043.


2004 ◽  
Vol 64 (23) ◽  
pp. 8761-8766 ◽  
Author(s):  
Isabelle Bourgault Villada ◽  
Micheline Moyal Barracco ◽  
Marianne Ziol ◽  
Aude Chaboissier ◽  
Nathalie Barget ◽  
...  

2003 ◽  
Author(s):  
James Gulley ◽  
William Dahut ◽  
Philip M. Arlen ◽  
Kwong Tsang ◽  
Jeffrey Schlom

2013 ◽  
Vol 14 (1) ◽  
pp. 49 ◽  
Author(s):  
Karen A Smith ◽  
Nicola J Gray ◽  
Femi Saleh ◽  
Elizabeth Cheek ◽  
Anthony J Frew ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document